Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

765 results about "Brain tumor" patented technology

A mass of abnormal cells in the brain.

Unsupervised domain-adaptive brain tumor semantic segmentation method based on deep adversarial learning

The invention provides an unsupervised domain-adaptive brain tumor semantic segmentation method based on deep adversarial learning. The method comprises the steps of deep coding-decoding full-convolution network segmentation system model setup, domain discriminator network model setup, segmentation system pre-training and parameter optimization, adversarial training and target domain feature extractor parameter optimization and target domain MRI brain tumor automatic semantic segmentation. According to the method, high-level semantic features and low-level detailed features are utilized to jointly predict pixel tags by the adoption of a deep coding-decoding full-convolution network modeling segmentation system, a domain discriminator network is adopted to guide a segmentation model to learn domain-invariable features and a strong generalization segmentation function through adversarial learning, a data distribution difference between a source domain and a target domain is minimized indirectly, and a learned segmentation system has the same segmentation precision in the target domain as in the source domain. Therefore, the cross-domain generalization performance of the MRI brain tumor full-automatic semantic segmentation method is improved, and unsupervised cross-domain adaptive MRI brain tumor precise segmentation is realized.
Owner:CHONGQING UNIV OF TECH

Compounds as rearranged during transfection (RET) inhibitors

This invention relates to novel compounds which are inhibitors of the Rearranged during Transfection (RET) kinase, to pharmaceutical compositions containing them, to processes for their preparation, and to their use in therapy, alone or in combination, for the normalization of gastrointestinal sensitivity, motility and / or secretion and / or abdominal disorders or diseases and / or treatment related to diseases related to RET dysfunction or where modulation of RET activity may have therapeutic benefit including but not limited to all classifications of irritable bowel syndrome (IBS) including diarrhea-predominant, constipation-predominant or alternating stool pattern, functional bloating, functional constipation, functional diarrhea, unspecified functional bowel disorder, functional abdominal pain syndrome, chronic idiopathic constipation, functional esophageal disorders, functional gastroduodenal disorders, functional anorectal pain, inflammatory bowel disease, proliferative diseases such as non-small cell lung cancer, hepatocellular carcinoma, colorectal cancer, medullary thyroid cancer, follicular thyroid cancer, anaplastic thyroid cancer, papillary thyroid cancer, brain tumors, peritoneal cavity cancer, solid tumors, other lung cancer, head and neck cancer, gliomas, neuroblastomas, Von Hippel-Lindau Syndrome and kidney tumors, breast cancer, fallopian tube cancer, ovarian cancer, transitional cell cancer, prostate cancer, cancer of the esophagus and gastroesophageal junction, biliary cancer, adenocarcinoma, and any malignancy with increased RET kinase activity.
Owner:GLAXOSMITHKLINE INTPROP DEV LTD

Brain tumor segmentation method based on deep neural network and multi-modal MRI image

The invention discloses a brain tumor segmentation method based on a deep neural network and a multi-modal MRI image. The method includes steps: constructing the deep neural network, wherein the deep convolution neural network includes two three-layer convolution layers, a three-layer full connection, and a classification layer, an input layer corresponds to the multi-modal MRI image, and each node of an output layer corresponds to a tumor classification label; performing MRI image preprocessing; training a network model; and testing the model, performing normalization on a to-be-segmented tumor image sequence by employing image blocks of an MRI image sequence and mean values and standard deviations thereof in a training process, inputting the normalized image sequence to the deep neural network with the optimization network connection weight, obtaining node values of the classification layer, and obtaining the tumor classification of a to-be-segmented brain tumor image. According to the method, tumor abstract topological characteristic information in the multi-modal MRI image is mined and extracted by employing the deep neural network, and high segmentation accuracy and high segmentation precision can be guaranteed in brain tumor segmentation of the multi-modal MRI images.
Owner:UNIV OF ELECTRONICS SCI & TECH OF CHINA

MRI (Magnetic Resonance Imaging) brain tumor localization and intratumoral segmentation method based on deep cascaded convolution network

ActiveCN108492297AAlleviate the sample imbalance problemReduce the number of categoriesImage enhancementImage analysisClassification methodsHybrid neural network
The invention provides an MRI (Magnetic Resonance Imaging) brain tumor localization and intratumoral segmentation method based on a deep cascaded convolution network, which comprises the steps of building a deep cascaded convolution network segmentation model; performing model training and parameter optimization; and carrying out fast localization and intratumoral segmentation on a multi-modal MRIbrain tumor. According to the MRI brain tumor localization and intratumoral segmentation method provided by the invention based on the deep cascaded convolution network, a deep cascaded hybrid neuralnetwork formed by a full convolution neural network and a classified convolution neural network is constructed, the segmentation process is divided into a complete tumor region localization phase andan intratumoral sub-region localization phase, and hierarchical MRI brain tumor fast and accurate localization and intratumoral sub-region segmentation are realized. Firstly, the complete tumor region is localized from an MRI image by adopting a full convolution network method, and then the complete tumor is further divided into an edema region, a non-enhanced tumor region, an enhanced tumor region and a necrosis region by adopting an image classification method, and accurate localization for the multi-modal MRI brain tumor and fast and accurate segmentation for the intratumoral sub-regions are realized.
Owner:CHONGQING NORMAL UNIVERSITY

Brain tumor segmentation network and segmentation method based on U-Net network

The invention discloses a brain tumor segmentation network and segmentation method based on a U-Net network. The tail of a contraction path of the segmentation network is connected with a spatial pyramid pooling structure; hole convolution of different scales is introduced into a network jump connection part of the segmentation network; an Add operation and original input are adopted to form a residual block with hole convolution; a receptive field of shallow feature information in the contraction path is expanded; fusing with an expansion path of a corresponding stage is carried out. The segmentation method comprises the following steps: cutting and preprocessing a training data set, then constructing a brain tumor segmentation network DCU-Net based on a U-Net network, then inputting a preprocessed two-dimensional image into a segmentation model for feature learning and optimization, obtaining an optimal parameter model of the segmentation model, and finally inputting a to-be-segmented test data set image into the segmentation model for tumor region segmentation. According to the method, the problems of over-segmentation and under-segmentation in brain tumor segmentation can be effectively solved, and the brain tumor segmentation precision is improved.
Owner:HENAN UNIVERSITY OF TECHNOLOGY

Novel compounds as rearranged during transfection (RET) inhibitors

This invention relates to novel compounds which are inhibitors of the Rearranged during Transfection (RET) kinase, to pharmaceutical compositions containing them, to processes for their preparation, and to their use in therapy, alone or in combination, for the normalization of gastrointestinal sensitivity, motility and/or secretion and/or abdominal disorders or diseases and/or treatment related to diseases related to RET dysfunction or where modulation of RET activity may have therapeutic benefit including but not limited to all classifications of irritable bowel syndrome (IBS) including diarrhea-predominant, constipation-predominant or alternating stool pattern, functional bloating, functional constipation, functional diarrhea, unspecified functional bowel disorder, functional abdominal pain syndrome, chronic idiopathic constipation, functional esophageal disorders, functional gastroduodenal disorders, functional anorectal pain, inflammatory bowel disease, proliferative diseases such as non-small cell lung cancer, hepatocellular carcinoma, colorectal cancer, medullary thyroid cancer, follicular thyroid cancer, anaplastic thyroid cancer, papillary thyroid cancer, brain tumors, peritoneal cavity cancer, solid tumors, other lung cancer, head and neck cancer, gliomas, neuroblastomas, Von Hippel-Lindau Syndrome and kidney tumors, breast cancer, fallopian tube cancer, ovarian cancer, transitional cell cancer, prostate cancer, cancer of the esophagus and gastroesophageal junction, biliary cancer, adenocarcinoma, and any malignancy with increased RET kinase activity.
Owner:GLAXOSMITHKLINE INTPROP DEV LTD

Brain tumor automatic segmentation method through fusion of full convolutional neural network and conditional random field

The present invention belongs to the computer-assisted medical field, and especially relates to a brain tumor automatic segmentation method through fusion of a full convolutional neural network and a conditional random field. The objective of the invention is to solve the problem that the depth learning technology cannot ensure the continuity of a segmentation result on the appearance and the space when the brain tumor segmentation is performed in the prior art. In order to solve the problem mentioned above, the method comprises the following steps: the step 1, employing a non-uniform offset correction and luminance regularization method to process the magnetic resonance image of the brain tumor image to generate a second magnetic resonance image; and the step 2, employing the neural network fusing the full convolutional neural network and the conditional random field to perform brain tumor segmentation of the second magnetic resonance image and output the brain tumor segmentation result. The brain tumor automatic segmentation method through fusion of the full convolutional neural network and the conditional random field can perform end-to-end brain tumor segmentation slice to slice and has higher operation efficiency.
Owner:INST OF AUTOMATION CHINESE ACAD OF SCI
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products