Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1472 results about "Metabolic disease" patented technology

RNA interference mediated inhibition of proprotein convertase subtilisin Kexin 9 (PCSK9) gene expression using short interfering nucleic acid (siNA)

InactiveUS20070173473A1Improve stabilityModulating RNAi activitySugar derivativesMicrobiological testing/measurementLipid formationProprotein Convertase Subtilisin/Kexin 9
The present invention relates to compounds, compositions, and methods for the study, diagnosis, and treatment of traits, diseases and conditions that respond to the modulation of Proprotein Convertase Subtilisin Kexin 9 (PCSK9) gene expression and/or activity. The present invention is also directed to compounds, compositions, and methods relating to traits, diseases and conditions that respond to the modulation of expression and/or activity of genes involved in Proprotein Convertase Subtilisin Kexin 9 (PCSK9) gene expression pathways or other cellular processes that mediate the maintenance or development of such traits, diseases and conditions. Specifically, the invention relates to double stranded nucleic acid molecules including small nucleic acid molecules, such as short interfering nucleic acid (siNA), short interfering RNA (siRNA), double-stranded RNA (dsRNA), micro-RNA (miRNA), and short hairpin RNA (shRNA) molecules capable of mediating RNA interference (RNAi) against Proprotein Convertase Subtilisin Kexin 9 (PCSK9) gene expression, including cocktails of such small nucleic acid molecules and lipid nanoparticle (LNP) formulations of such small nucleic acid molecules. The present invention also relates to small nucleic acid molecules, such as siNA, siRNA, and others that can inhibit the function of endogenous RNA molecules, such as endogenous micro-RNA (miRNA) (e.g, miRNA inhibitors) or endogenous short interfering RNA (siRNA), (e.g., siRNA inhibitors) or that can inhibit the function of RISC (e.g., RISC inhibitors), to modulate PCSK9 gene expression by interfering with the regulatory function of such endogenous RNAs or proteins associated with such endogenous RNAs (e.g., RISC), including cocktails of such small nucleic acid molecules and lipid nanoparticle (LNP) formulations of such small nucleic acid molecules. Such small nucleic acid molecules and are useful, for example, in providing compositions to prevent, inhibit, or reduce metabolic diseases traits and conditions, including but not limited to hyperlipidemia, hypercholesterolemia, cardiovascular disease, atherosclerosis, hypertension, diabetis (e.g., type I and/or type II diabetis), insulin resistance, obesity and/or other disease states, conditions, or traits associated with PCSK9 gene expression or activity in a subject or organism.
Owner:SIRNA THERAPEUTICS INC

Passive Microwave Assessment of Human Body Core to Surface Temperature Gradients and Basal Metabolic Rate

InactiveUS20120029369A1Enhances ability to quantifyEnhances to mapThermometers using value differencesBody temperature measurementDiseaseHuman body
A passive microwave thermography apparatus uses passive microwave antennas designed for operation, for example, at WARC protected frequencies of 1.400 to 1.427 GHz and 2.690 to 2.70 GHz (for core body gradient temperature measurement) and 10.68 to 10.700 GHz or higher microwave frequency (for surface body gradient temperature measurement) and a related directional antenna or antenna array to measure microwave radiation emanating from an animal, especially, a human body. The antennae may be radially directed toward a point within or on the surface of a human body for comparison with known temperature distribution data for that point and a given ambient temperature. Each frequency band may provide a plurality of adjacent noise measuring channels for measuring microwave noise naturally emitted by the human body. The apparatus measures short-term changes in, for example, core and body surface temperatures to establish a basal metabolic rate. Changes in core body temperature may be stimulated by the administration of food or certain organic and drug-related substances or stress to induce a change in basal metabolic rate over time. These changes correlate directly with a human subject's metabolism rate at rest and under certain dietary constraints and can be used to determine courses of treatment for obesity, metabolic disease, and other disorders. The apparatus can also be used to remotely monitor patients and subjects without physical contact.
Owner:ICOVE DAVID +3
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products