Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

870 results about "Independent data" patented technology

Independent Data means, with respect to the Licensed Products, all data, including without limitation, toxicological, pharmaceutical, clinical, non-clinical and medical data, health registration data and marketing data, developed by a Sponsoring Party or its Associates in an Independent Trial in respect...

System and method for determining changes in two snapshots and for transmitting changes to destination snapshot

A system and method for remote asynchronous replication or mirroring of changes in a source file system snapshot in a destination replica file system using a scan (via a scanner) of the blocks that make up two versions of a snapshot of the source file system, which identifies changed blocks in the respective snapshot files based upon differences in volume block numbers identified in a scan of the logical file block index of each snapshot. Trees of blocks associated with the files are traversed, bypassing unchanged pointers between versions and walking down to identify the changes in the hierarchy of the tree. These changes are transmitted to the destination mirror or replicated snapshot. This technique allows regular files, directories, inodes and any other hierarchical structure to be efficiently scanned to determine differences between versions thereof. The changes in the files and directories are transmitted over the network for update of the replicated destination snapshot in an asynchronous (lazy write) manner. The changes are described in an extensible, system-independent data stream format layered under a network transport protocol. At the destination, source changes are used to update the destination snapshot. Any deleted or modified inodes already on the destination are moved to a temporary or “purgatory” directory and, if reused, are relinked to the rebuilt replicated snapshot directory. The source file system snapshots can be representative of a volume sub-organization, such as a qtree.
Owner:NETWORK APPLIANCE INC

Mechanism and apparatus for returning results of services in a distributed computing environment

Systems and methods for returning results of services within a distributed computing environment are provided. After a client invokes one or more functions of a service, results of the function(s) may be returned to the client in a plurality of ways: for example, in a message, in a space (e.g., a network-addressable storage location), in a space wherein the client is notified via an event, using an advertisement returned in a message, using an advertisement returned in a space, and using an advertisement returned in a space wherein the client is notified via an event. The advertisement may include the information necessary to access and read the results in a storage location such as a space. A schema for the service may specify a plurality of messages which are usable to invoke the function(s) of the service. The messages, results, and advertisements may be expressed in a platform-independent and / or programming-language-independent data representation language such as XML. The availability of these plurality of methods may enhance the flexibility and adaptability of the distributed computing environment for a variety of situations, such as for clients having differing capabilities. For additional flexibility, results may also be efficiently passed to another service.
Owner:ORACLE INT CORP

System and method for determining changes in two snapshots and for transmitting changes to a destination snapshot

A system and method for remote asynchronous replication or mirroring of changes in a source file system snapshot in a destination replica file system using a scan (via a scanner) of the blocks that make up two versions of a snapshot of the source file system, which identifies changed blocks in the respective snapshot files based upon differences in volume block numbers identified in a scan of the logical file block index of each snapshot. Trees of blocks associated with the files are traversed, bypassing unchanged pointers between versions and walking down to identify the changes in the hierarchy of the tree. These changes are transmitted to the destination mirror or replicated snapshot. This technique allows regular files, directories, inodes and any other hierarchical structure to be efficiently scanned to determine differences between versions thereof. The changes in the files and directories are transmitted over the network for update of the replicated destination snapshot in an asynchronous (lazy write) manner. The changes are described in an extensible, system-independent data stream format layered under a network transport protocol. At the destination, source changes are used to update the destination snapshot. Any deleted or modified inodes already on the destination are moved to a temporary or “purgatory” directory and, if reused, are relinked to the rebuilt replicated snapshot directory. The source file system snapshots can be representative of a volume sub-organization, such as a qtree.
Owner:NETWORK APPLIANCE INC

Security based on subliminal and supraliminal channels for data objects

This invention relates to security for data objects; more particularly, the present invention relates to improved security based on subliminal and supraliminal channels for data objects.
In one embodiment, a method for protecting a data signal comprises: providing a data signal to be encoded; using a first predetermined key to encode a first set of independent data into the data signal imperceptibly; and using a second predetermined key to encode a second set of independent data into the data signal perceptibly.
In another embodiment, a method of protecting a data object comprises: steganographically encoding a subset of candidate bits in a digitized sample stream; perceptibly manipulating data in the digitized sample stream; and combining the imperceptible and perceptible data changes to create a secure/unique digital sample stream.
In yet another embodiment, a method for securing a data signal comprises: preanalyzing said data signal for candidate watermark/signature bits; steganographically encoding independent data into the data signal into a subset of the candidate watermark bits, at least one time; and encoding the data signal subsequently with a perceptible technique.
In yet another embodiment, a method of protecting a data signal comprises: imperceptibly embedding data using a watermarking technique; perceptibly signing the data using the receiver's public key; encrypting the data signal using the receiver's public key and the private key used to watermark the signal; and enabling a receiver to authenticate/verify (separate steps) the data signal while connected to a communications channel.
Owner:WISTARIA TRADING INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products