Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

97results about How to "Minimize dependencies" patented technology

Using a community of distributed electronic agents to support a highly mobile, ambient computing environment

A highly mobile, ambient computing environment is disclosed for serving a knowledge worker away from the their desk. The present invention allows a knowledge worker to get increased leverage from personal, networked, and interactive computing devices while in their car, airplane seat, or in a conference room with others. An Open Agent Architecture is used to incorporate elements such as GPS agents, speech recognition, and opportunistic connectivity among meeting participants. Communication and cooperation between agents are brokered by one or more facilitators, which are responsible for matching requests, from users and agents, with descriptions of the capabilities of other agents. It is not generally required that a user or agent know the identities, locations, or number of other agents involved in satisfying a request, and relatively minimal effort is involved in incorporating new agents and “wrapping” legacy applications. Extreme flexibility is achieved through an architecture organized around the declaration of capabilities by service-providing agents, the construction of arbitrarily complex goals by users and service-requesting agents, and the role of facilitators in delegating and coordinating the satisfaction of these goals, subject to advice and constraints that may accompany them.
Owner:IPA TECH INC

Apparatus and Method for Fluid Phase Fraction Determination Using X-Rays

An apparatus for determining fluid phase fraction of a multiphase fluid mixture (13) comprises:—a x-ray generator (20) arranged to emit a x-ray radiation spectrum comprising a low energy region and a high energy region, the high energy region including a Bremsstrahlung spectrum;—a pipe section (27) through which the multiphase fluid mixture (13) flows comprising a measurement section (28), said measurement section (28) being coupled to said x-ray generator (20);—a detector (30) coupled to said measurement section (28) and arranged to detect x-ray radiation that has passed through said multiphase fluid mixture (13), the detector (30) being coupled to a multichannel analyzer (32) producing a measurement output comprising a low energy (LE) and high energy (HE) measurement counts; wherein the measurement output further comprises a low energy (LV) and high energy (HV) control counts, in a low energy and high energy control windows located on an edge of the Bremsstrahlung spectrum, respectively; and wherein the apparatus further comprises an electrical parameter control arrangement (33) coupled to the x-ray generator (20) and the detector (30), the electrical parameter control arrangement (33) being arranged to calculate a first ratio of the high energy control count relative to the low energy control count (RV=HV / LV) and a second ratio of the high energy measurement count relative to the low energy measurement count (RE=HE / LE), and to adjust the electrical operation of the x-ray generator (20) based on an electrical parameter control function (FC(V)) of said ratios that minimize a dependence of the electrical operation of the x-ray generator on the fluid phase fraction of the multiphase fluid mixture (13) flowing in the measurement section (28).
Owner:SCHLUMBERGER TECH CORP

Method and apparatus for drawing thick graphic primitives

InactiveUS6930686B1Efficiently drawMinimize dependenceDrawing from basic elementsCathode-ray tube indicatorsLine drawingsSet up time
A graphics system and method with which thick graphic primitives are efficiently drawn by minimizing dependence on drawing algorithms that require appreciable setup time. The method contemplates drawing a thick primitive in which an offset or displacement value is first calculated, based upon the thickness of the graphic primitive. The offset is approximately one half of the thickness of the primitive. Following calculation of the offset value, line drawing parameter values are determined for a line that is parallel to the origin line and displaced from the origin line in a minor axis direction by the displacement or offset value. A loop is then repeated for each grip point in the major axis range of the line. The loop includes an initial step in which a boundary pixel of the thick graphic primitive is drawn using the line drawing algorithm and the line drawing parameter values calculated for the offset line. After the boundary pixel has been drawn, one or more adjacent pixels are drawn using a stepping routine in which the mirior axis coordinate of the selected pixel is either decremented or incremented, depending upon the slope of the line, to write the pixels adjacent the boundary pixel. In this fashion, the present invention draws a thick primitive as a sequence of segments that are parallel to the minor axis of the origin line. In the preferred embodiment, the line drawing routine is preferably comprised of a Bresenham line drawing algorithm or a similar derivative algorithm. In the preferred embodiment, the displacement D is equal to FLOOR((W−1)/2), where W is the thickness of the primitive and FLOOR(X) is the integer portion of X.
Owner:IBM CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products