Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

101results about How to "Improve delivery capabilities" patented technology

Implantable power management system

The method and system for managing power supplied from a charging circuit to a power source in an implantable medical device comprises the steps of and circuitry for: measuring the current drain of the medical device; measuring the elapsed time since the last full charge of a power source of the device; calculating the actual capacity of the power source (corrected for fade) based on the variable of current drain and the variable of elapsed time; calculating the operating time based on the variable of current drain and the variable of the actual capacity of the power source; measuring the voltage of the power source; signaling the medical device when the power source voltage has reached a certain low value which requires disconnection from the power source; disconnecting, during discharging, the power source from the medical device upon the power source reaching a certain low voltage in order to prevent deep discharging of the power source and subsequent damage; precisely limiting the charging voltage to the power source in order to prevent overcharging beyond safe limits; disconnecting, during charging, the power source from the charging circuit upon the power source reaching a certain high voltage in order to prevent overcharging of the power source and subsequent damage; sensing when the electromagnetic waves being transmitted by an RF transmitter/charger induce a voltage level above a certain value at an RF receiver of the implanted power management system; reconnecting power supply inputs of the medical device to the power source upon sensing this induced high voltage level; monitoring the temperature of the power source during charging and discharging; disconnecting the charging circuitry from the power source if the temperature of the power source raises above a certain level during charging; reconnecting the charging circuitry to the power source when the temperature of the power source drops below a certain low value during charging; disconnecting the implanted medical device from the power source if the temperature of the power source raises above a certain level during discharging; and, reconnecting the medical device to the power source when the temperature of the power source drops below a certain low value during discharging.
Owner:EXONIX

Implantable power management system

The method and system for managing power supplied from a charging circuit to a power source in an implantable medical device comprises the steps of and circuitry for: measuring the current drain of the medical device; measuring the elapsed time since the last full charge of a power source of the device; calculating the actual capacity of the power source (corrected for fade) based on the variable of current drain and the variable of elapsed time; calculating the operating time based on the variable of current drain and the variable of the actual capacity of the power source; measuring the voltage of the power source; signaling the medical device when the power source voltage has reached a certain low value which requires disconnection from the power source; disconnecting, during discharging, the power source from the medical device upon the power source reaching a certain low voltage in order to prevent deep discharging of the power source and subsequent damage; precisely limiting the charging voltage to the power source in order to prevent overcharging beyond safe limits; disconnecting, during charging, the power source from the charging circuit upon the power source reaching a certain high voltage in order to prevent overcharging of the power source and subsequent damage; sensing when the electromagnetic waves being transmitted by an RF transmitter / charger induce a voltage level above a certain value at an RF receiver of the implanted power management system; reconnecting power supply inputs of the medical device to the power source upon sensing this induced high voltage level; monitoring the temperature of the power source during charging and discharging; disconnecting the charging circuitry from the power source if the temperature of the power source raises above a certain level during charging; reconnecting the charging circuitry to the power source when the temperature of the power source drops below a certain low value during charging; disconnecting the implanted medical device from the power source if the temperature of the power source raises above a certain level during discharging; and, reconnecting the medical device to the power source when the temperature of the power source drops below a certain low value during discharging.
Owner:EXONIX

System for feeding coal mine solid filling material

The invention relates to a system for feeding a coal mine solid filling material. The system comprises a filling control chamber, a gangue material bin, a coal ash material bin, a feeding pipe, an underground closed chamber, an impact resistance buffering device, an underground material bin and an underground conveying system, wherein the impact resistance buffering device is positioned at the bottom of the underground closed chamber; the feeding pipe is connected with the underground material bin through the underground closed chamber; the underground material bin is connected with the underground conveying system; the underground conveying system comprises a conveying passage and a conveyer; the conveyer is connected to a filling point; the feeding pipe consists of a protection hole wall steel pipe and a double-layer anti-abrasion pipe; a ceramic anti-abrasion pipe is sleeved on a shrinkage wall at the bottom of the underground material bin; and an outwards discharging type air guide hose is arranged at the upper opening of the underground material bin. According to the system, a large-aperture perpendicular feeding pipe is used for feeding the material, so that the feeding capacity of the filling material is improved, and a filling effect and the safety are improved; by the umbrella-shaped impact resistance buffering device, falling impact force of the filling material can be relieved; the compactness of the filling material in the bin can be reduced; and the bins can be prevented from being plugged.
Owner:HEBEI COAL SCI RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products