Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

212 results about "Stent placement" patented technology

[edit on Wikidata] In medicine, a stent is a metal or plastic tube inserted into the lumen of an anatomic vessel or duct to keep the passageway open, and stenting is the placement of a stent.

Reslution optical & ultrasound devices for imaging and treatment of body lumens

A rotationally vibrating imaging catheter and method of utilization has an array of ultrasound or optical transducers and an actuator along with signal processing, display, and power subsystems. The actuator of the preferred embodiment is a solid-state nitinol actuator. The actuator causes the array to oscillate such that the tip of the catheter is rotated through an angle equal to or less than 360 degrees. The tip is then capable of rotating back the same amount. This action is repeated until the desired imaging information is acquired. The rotationally vibrating catheter produces more imaging points than a non-rotating imaging catheter and eliminates areas of missing information in the reconstructed image.Rotationally vibrating catheters offer higher image resolution than stationary array catheters and greater flexibility and lower costs than mechanically rotating imaging catheters.The rotationally vibrating array carried on a catheter is vibrated or rocked forward and backward to allow for acquisition of three-dimensional information within a region around the transducer array.The addition of adjunctive therapies to the imaging catheter enhances the utility of the instrument. Examples of such therapies include atherectomy, stent placement, thrombectomy, embolic device placement, and irradiation.
Owner:LENKER JAY A

Stent delivery catheter

The present invention provides a stent delivery catheter that can place a stent in a tortuous narrowed area with good maneuverability while preventing falling or displacement of the stent. The present invention provides a stent delivery catheter for delivering a stent for treating stenosis in a body to a narrowed area. A distal end of the catheter includes a collapsible balloon in a collapsed state and the stent in an undeployed state, the stent being mounted on the outer surface of the collapsed balloon, the balloon having frustoconical tapered segments and a cylindrical straight tubular segment. An inner tube for defining a guidewire lumen extends into the interior of the balloon, and displacement prevention mechanisms for preventing the stent from moving in the longitudinal direction of the stent delivery catheter are affixed to the inner surface of the balloon only. Another aspect of the present invention provides a stent delivery catheter that can prevent the stent from moving in the axis direction of the catheter without requiring additional components or additional steps that complicate the manufacturing process. In this catheter, the thickness T1 of a near-center portion of the distal-end tapered segment and the thickness T2 of a near-center portion of the straight tubular segment satisfy a predetermined relationship, and the thickness T3 of a near-center portion of the proximal-end tapered segment and the thickness T2 of the near-center portion of the straight tubular segment satisfy a predetermined relationship. In this manner, the distal-end and proximal-end tapered segments in the collapsed state prevent the movement of the stent. The present invention also provides a preferable RX balloon catheter, i.e., a stent delivery catheter, having improved maneuverability and enhanced responsiveness for expansion and contraction of the balloon without complicating the manufacturing process or increasing the cost.
Owner:KANEKA CORP

Resolution optical and ultrasound devices for imaging and treatment of body lumens

A rotationally vibrating imaging catheter and method of utilization has an array of ultrasound or optical transducers and an actuator along with signal processing, display, and power subsystems. The actuator of the preferred embodiment is a solid-state nitinol actuator. The actuator causes the array to oscillate such that the tip of the catheter is rotated through an angle equal to or less than 360 degrees. The tip is then capable of rotating back the same amount. This action is repeated until the desired imaging information is acquired. The rotationally vibrating catheter produces more imaging points than a non-rotating imaging catheter and eliminates areas of missing information in the reconstructed image.
Rotationally vibrating catheters offer higher image resolution than stationary array catheters and greater flexibility and lower costs than mechanically rotating imaging catheters.
The rotationally vibrating array carried on a catheter is vibrated or rocked forward and backward to allow for acquisition of three-dimensional information within a region around the transducer array.
The addition of adjunctive therapies to the imaging catheter enhances the utility of the instrument. Examples of such therapies include atherectomy, stent placement, thrombectomy, embolic device placement, and irradiation.
Owner:LENKER JAY A

Medical appliance delivery apparatus and method of use

InactiveUS7608099B2Facilitate precise deliveryDeployment can be restrictedStentsEar treatmentInsertion stentStent deployment
The present invention, in an exemplary embodiment, provides a stent deployment apparatus comprising excellent safety and stent placement and deployment features. An exemplary stent deployment apparatus in accordance with the present invention can facilitate the precise delivery of stents in a safe and repeatable fashion. In particular, a preferred deployment apparatus allows the physician to concentrate on correct placement without having to estimate extent of deployment by providing a physical safety mechanism that limits deployment to the critical deployment point. Moreover, to exceed this threshold, an audible and / or tactile indicator informs the physician that she can no longer retract the stent beyond this point. The stent deployment apparatus guidewire may also be extended rather than retracting the outer catheter to deliver the stent. Moreover, the distal tip is designed to comfortably guide the deployment apparatus through a diseased or occluded lumen so that the stent can be delivered in the most beneficial location. Additionally, the distal tip facilitates the removal of the deployment apparatus even if a defective stent is only partially radially expanded. In alternative embodiments, the stent deployment apparatus allows for the insertion of an optical scope to facilitate stent delivery.
Owner:MERIT MEDICAL SYST INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products