Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

335 results about "Guide catheter" patented technology

Intravascular system for occluded blood vessels and guidewire for use therein

A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter. The guide catheter includes a wear resistant coating and is constructed so that its distal end includes plural sections of different outside diameters, with the distal most section being of the smallest outside diameter. A control console is provided to establish various modes of operation of the system based on manual inputs via switches or voice commands via voice recognition circuitry. A video panel displays the various modes of operation and instructions to the operator.
Owner:KENSEY NASH CORP

System and method of use for agent delivery and revascularizing of grafts and vessels

InactiveUS6905505B2Effectively revascularizingAvoid flowBalloon catheterCannulasImpellerBiological body
A system and method for opening a lumen in an occluded blood vessel, e.g., a coronary bypass graft, of a living being. The system comprises an atherectomy catheter having a working head, e.g., a rotary impacting impeller, and a debris extraction sub-system. The atherectomy catheter is located within a guide catheter. The working head is arranged to operate on, e.g., impact, the occlusive material in the occluded vessel to open a lumen therein, whereupon some debris may be produced. The debris extraction sub-system introduces an infusate liquid at a first flow rate adjacent the working head and withdraws that liquid and some blood at a second and higher flow rate, through the guide catheter to create a differential flow adjacent the working head, whereupon the debris is withdrawn in the infusate liquid and blood for collection outside the being's body. The introduction of the infusate liquid may also be used to establish an unbalanced flow adjacent the working head to enable the atherectomy catheter to be steered hydrodynamically. A guide wire having an inflatable balloon on its distal end may be used with the atherectomy catheter to block the flow of debris distally, while enabling distal tissues to be perfused with an oxygenating liquid. At least one flow control port may be provided in the guide catheter to prevent collapse of the vessel being revascularized. A cradle is provided to fix the guide catheter and guide wire in position within the body of the being while enabling the atherectomy catheter to be advanced along the guide wire and through the guide catheter.
Owner:KENSEY NASH CORP

Soft tip guiding catheter and method of fabrication

The present invention relates to medical vascular catheters adapted to be inserted into a blood vessel from an incision through the skin of a patient for introducing ther devices or fluids for diagnostic or therapeutic purposes, and particularly to an improved distal soft tip or segment attachment with a relatively stiff proximal catheter shaft. A tubular sleeve is bonded through the application of pressure and heat to a distal portion of the catheter shaft and a proximal portion of the distal segment of soft distal tip bridging the attachment junction. In the preferred method, the catheter shaft distal end is aligned with the distal segment or soft tip proximal end and the sleeve is fitted over the attachment junction. A heat shrink tube is fitted over the sleeve and adjoining portions of the catheter shaft and the distal segment or distal soft tip and heat is applied. The shrinkage force of the heat shrink tube over the assembly of the tubular sleeve overlying and bridging the attachment junction and the applied heat melts and force the materials of the tubular sleeve and the catheter shaft and the distal segment or distal soft tip together to fill interstitial spaces of the attachment junction and reduces the outer diameter of the sleeve. The heat shrink tube is removed after the assembly cools and solidifies. Preferably, the catheter shaft distal end and the soft tip or intermediate segment proximal end are each formed with a like plurality of ungular cut sections that are complementary in shape to one another, whereby the ungular cut sections are aligned with and mated together along the attachment junction.
Owner:MEDTRONIC INC

Everting stent and stent delivery system

Devices and methods for delivering stents to target vessel regions, including stent delivery through microcatheters to narrow cerebral arteries. One stent delivery device includes a stent having the distal region everted over the distal end of a delivery tube, having the everted stent distal end captured by a distal element of a elongate release member disposed through the delivery tube. The delivery tube can have a distal taper to a small profile distal end. The everted stent distal region can be captured between the release member distal element and the surrounding delivery tube distal region walls. The captured and everted stent can be distally advanced to a target site, followed by manipulating the release member to free the captured stent. Some devices utilize distal advancement of the release member while other devices use proximal retraction of the release member to free the captured stent distal end. Once released, the stent is free to self-expand or be expanded against the surrounding blockage and/or vessel walls. In some methods, a guide catheter or microcatheter is also included and disposed about the everted and captured stent to advance the stent, delivery tube, and release member to a location near the site to be stented. The devices and methods provide stent delivery not requiring an enclosing delivery sheath about the stent. The everted stent can thus have a very small distal profile enabling small diameter vessels to be crossed and treated.
Owner:TYCO HEALTHCARE GRP LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products