Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

496 results about "Angiography" patented technology

Angiography or arteriography is a medical imaging technique used to visualize the inside, or lumen, of blood vessels and organs of the body, with particular interest in the arteries, veins, and the heart chambers. This is traditionally done by injecting a radio-opaque contrast agent into the blood vessel and imaging using X-ray based techniques such as fluoroscopy.

Apparatus and method for inserting an intra-aorta catheter through a delivery sheath

An introducer system delivers therapy locally to a renal system in a patient. A proximal coupler assembly is coupled to an introducer sheath that delivers multiple devices simultaneously into a location within an abdominal aorta associated with first and second renal artery ostia. The coupler assembly has a network of branch lumens arranged to allow for smooth slideable engagement of multiple coupled devices without substantial interference therebetween. A first branch lumen typically introduces a percutaneous translumenal interventional device such as an angiography or guiding catheter into the introducer sheath and is substantially aligned with a longitudinal axis of the sheath. One or more other branch lumen are off-axis from the longitudinal axis by about 30 degrees or less and introduce components of a bilateral renal delivery assembly into the introducer sheath in conjunction with the other device. Novel insertion devices are provided to coordinate the coupling of the multiple devices.
Owner:ANGIODYNAMICS INC

Angiography method and apparatus

InactiveUS6842638B1Overcome failureRapid and accurate vessel boundary estimationImage enhancementImage analysisEngineeringVascular structure
A two-dimensional slice formed of pixels (376) is extracted from the angiographic image (76) after enhancing the vessel edges by second order spatial differentiation (78). Imaged vascular structures in the slice are located (388) and flood-filled (384). The edges of the filled regions are iteratively eroded to identify vessel centers (402). The extracting, locating, flood-filling, and eroding is repeated (408) for a plurality of slices to generate a plurality of vessel centers (84) that are representative of the vascular system. A vessel center (88) is selected, and a corresponding vessel direction (92) and orthogonal plane (94) are found. The vessel boundaries (710) in the orthogonal plane (94) are identified by iteratively propagating (704) a closed geometric contour arranged about the vessel center (88). The selecting, finding, and estimating are repeated for the plurality of vessel centers (84). The estimated vessel boundaries (710) are interpolated (770) to form a vascular tree (780).
Owner:MARCONI MEDICAL SYST +1

Apparatus and method for inserting an intra-aorta catheter through a delivery sheath

An introducer system delivers therapy locally to a renal system in a patient. A proximal coupler assembly is coupled to an introducer sheath that delivers multiple devices simultaneously into a location within an abdominal aorta associated with first and second renal artery ostia. The coupler assembly has a network of branch lumens arranged to allow for smooth slideable engagement of multiple coupled devices without substantial interference therebetween. A first branch lumen typically introduces a percutaneous translumenal interventional device such as an angiography or guiding catheter into the introducer sheath and is substantially aligned with a longitudinal axis of the sheath. One or more other branch lumen are off-axis from the longitudinal axis by about 30 degrees or less and introduce components of a bilateral renal delivery assembly into the introducer sheath in conjunction with the other device. Novel insertion devices are provided to coordinate the coupling of the multiple devices.
Owner:ANGIODYNAMICS INC

Method and apparatus for performing intra-operative angiography

InactiveUS6915154B1Accurately determine extentSensorsBlood flow measurementAfter treatmentAv fistulas
Method for assessing the patency of a patient's blood vessel, advantageously during or after treatment of that vessel by an invasive procedure, comprising administering a fluorescent dye to the patient; obtaining at least one angiographic image of the vessel portion; and evaluating the at least one angiographic image to assess the patency of the vessel portion. Other related methods are contemplated, including methods for assessing perfusion in selected body tissue, methods for evaluating the potential of vessels for use in creation of AV fistulas, methods for determining the diameter of a vessel, and methods for locating a vessel located below the surface of a tissue.
Owner:STRYKER EUROPEAN OPERATIONS LIMITED

Black blood angiography method and apparatus

To produce a black body angiographic image representation of a subject (42), an imaging scanner (10) acquires imaging data that includes black blood vascular contrast. A reconstruction processor (38) reconstructs a gray scale image representation (100) from the imaging data. A post-acquisition processor (46) transforms (130) the image representation (100) into a pre-processed image representation (132). The processor (46) assigns (134) each image element into one of a plurality of classes including a black class corresponding to imaged vascular structures, bone, and air, and a gray class corresponding to other non-vascular tissues. The processor (46) averages (320) intensities of the image elements of the gray class to obtain a mean gray intensity value (322), and replaces (328) the values of image elements comprising non-vascular structures of the black class with the mean gray intensity value.
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV +1

Embolization protection system for vascular procedures

Apparatus and methods are described for effective removal of emboli or harmful fluids during vascular procedures, such as angiography, balloon angioplasty, stent deployment, laser angioplasty, atherectomy, intravascular ultrasonography and other therapeutic and diagnostic procedures. A catheter with an occluder mounted at its distal end creates an occlusion proximal to the lesion. The catheter provides a pathway for introducing a treatment catheter. Prior to, during or subsequent to the procedure, suction is activated to establish retrograde flow to remove emboli from the site. Additionally, a thin catheter with a distal fluid ejection nozzle maybe introduced distal to the treatment site to rinse emboli from the treatment site. The suction flow and / or ejected fluid flow may be varied in a pulsatile manner to simulate regular blood flow and / or perturb settled emboli into being captured that may otherwise not be collected. The method establishes a protective environment before any devices enter the site to be treated.
Owner:CHINE LLC

System and method for performing a three-dimensional virtual examination of objects, such as internal organs

InactiveUS7194117B2Efficiently store and recallUltrasonic/sonic/infrasonic diagnosticsImage enhancementCystoscopyVolume visualization
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

System for Processing Angiography and Ultrasound Image Data

A system provides a single composite image including multiple medical images of a portion of patient anatomy acquired using corresponding multiple different types of imaging device. A display processor generates data representing a single composite display image including, a first image area showing a first image of a portion of patient anatomy acquired using a first type of imaging device, a second image area showing a second image of the portion of patient anatomy acquired using a second type of imaging device different to the first type. The first and second image areas include first and second markers respectively. The first and second markers identify an estimated location of the same corresponding anatomical position in the portion of patient anatomy in the first and second images respectively. A user interface enables a user to move at least one of, (a) the first marker in the first image and (b) the second marker in the second image, to correct the estimated location so the first and second markers identify the same corresponding anatomical position in the portion of patient anatomy.
Owner:SIEMENS HEALTHCARE GMBH

Method for acquiring and evaluating vascular examination data

The invention relates to a method for acquiring and evaluating vascular examination data, comprising: acquisition of IVUS images of a vessel to be examined using an IVUS catheter; simultaneous acquisition of angiography data of the IVUS catheter having at least one angiography marker; acquisition of OCT images of the same point of the vessel to be examined using an OCT catheter; simultaneous acquisition of angiography data of the OCT catheter having at least one angiography marker; registering the IVUS and OCT images; determination of contours of the structures of the vessel under examination based on the OCT images; arithmetic histological analysis of the co-registered IVUS and OCT images using the information about the contours; and display the results.
Owner:SIEMENS AG

System and method for performing a three-dimensional virtual examination of objects, such as internal organs

InactiveUS7474776B2Efficiently store and recallUltrasonic/sonic/infrasonic diagnosticsImage enhancementCystoscopyVolume visualization
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Cone beam volume CT angiography imaging system and method

Only a single IV contrast injection with a short breathhold by the patient is needed for use with a volume CT scanner which uses a cone-beam x-ray source and a 2-D detector for fast volume scanning in order to provide true 3-D descriptions of vascular anatomy with more than 0.5 lp / mm isotropic resolution in the x, y and z directions is utilized in which one set of cone-beam projections is acquired while rotating the x-ray tube and detector on the CT gantry and then another set of projections is acquired while tilting the gantry by a small angle. The projection data is preweighted, partial derivatives are calculated and rebinned for both the circular orbit and arc orbit data The second partial derivative is then calculated and then the reconstructed 3-D images are obtained by backprojecting using the inverse Radon transform.
Owner:UNIVERSITY OF ROCHESTER

System and method for performing a three-dimensional virtual examination of objects, such as internal organs

InactiveUS20070103464A1Efficiently store and recallImage enhancementImage analysisCystoscopyVolume visualization
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Hand-held, hand operated power syringe and methods

A hand-held power syringe. The power syringe includes a handle with pivotally connected first and second members. The first member is also pivotally connectable to a syringe barrel, while the second member is pivotally connectable to a syringe plunger. These three pivotal connections provide leverage for forcing high viscosity fluids into and out of a receptacle of the syringe barrel. One or both of the first and second members of the handle may be bent to facilitate a user's gripping and movement of the first and second handle members. The power syringe may be used in any suitable injection, infusion, or sample-obtaining application, including angiography and angioplasty.
Owner:PMT PARTNERS

Detection and localization of vascular occlusion from angiography data

A technique for detecting and localising vascular occlusions in the brain of a patient is presented. The technique uses volumetric angiographic data of the brain. A mid-sagittal plane and / or lines is / are identified within the set of angiographic data. Optionally, the asymmetry of the hemispheres is measured, thereby obtaining an initial indication of whether an occlusion might be present. The angiographic data is mapped to pre-existing atlas of blood supply territories, thereby obtaining the portion of the angiographic data corresponding to each of the blood supply territories. For each territory (including any sub-territories), the asymmetry of the corresponding portion of the angiographic data about the mid-sagittal plane / lines is measured, thereby detecting any of the blood supply territory including an occlusion. The angiographic data for any such territory is displayed by a three-dimensional imaging technique.
Owner:AGENCY FOR SCI TECH & RES

Method and device for automatically adapting a reference image

A method and a device for reference image adapting in the field of fluoroscopy-controlled interventional repair of abdominal aortic aneurisms on angiography systems are proposed. Displacements which can be brought about as a result of introducing instruments, such as when a stent is deployed in an aorta, are automatically corrected. It is also possible to correct such displacements which initially cannot be perceived in the image due to the angle of view.
Owner:SIEMENS HEALTHCARE GMBH

Angiographic x-ray diagnostic device for rotation angiography

The invention relates to an angiographic x-ray diagnostic device for rotation angiography with an x-ray emitter which can be moved on a circular path about a patient located on a patient support table, with an image detector unit which can moved on the circular path facing the x-ray emitter, with a digital image system for recording a plurality of projection images by means of rotation angiography, with a device for image processing, by means of which the projection images are reconstructed into a 3D volume image, and with a device for correcting physical effects and / or inadequacies in the recording system such as truncation correction, scatter correction, ring artifact correction, correction of the beam hardening and / or of the low frequency drop for the soft tissue display of projection images and the 3D volume images resulting therefrom.
Owner:SIEMENS HEALTHCARE GMBH

Method and System for Extracting Centerline Representation of Vascular Structures in Medical Images Via Optimal Paths in Computational Flow Fields

A method and apparatus for extracting centerline representations of vascular structures in medical images is disclosed. A vessel orientation tensor for each of a plurality of voxels associated with the target vessel, such as a coronary artery, in a medical image, such as a coronary tomography angiography (CTA) image, using a trained vessel orientation tensor classifier. A flow field is estimated for the plurality of voxels associated with the target vessel in the medical image based on the vessel orientation tensor estimated for each of the plurality of voxels. A centerline of the target vessel is extracted based on the estimated flow field for the plurality of vessels associated with the target vessel in the medical image by detecting a path that carries maximum flow.
Owner:SIEMENS HEALTHCARE GMBH

Vascular angiography three-dimensional rebuilding method under dynamic model direction

The present invention provides a dynamic model directed angiography three-dimensional reconstruction method, pertaining to an intersectional field of digital image processing and medicine imaging, for satisfying special requests of auxiliary detection and surgery guidance for cardiovascular disease in clinical medicine. The invention includes steps of angiography image preprocessing, vascellum segmentation, vascellum skeleton and radii extraction, model directed vascellum base element recognition, vascellum matching and vascellum three-dimensional reconstruction. The invention also provides a cardiovascular dynamic model construction method including steps of cardiovascular slice data extraction, cordis static and dynamic model building, and static and dynamic model building. According to the invention, good angiography three-dimensional reconstruction result may be obtained, which effectively assists detection and surgery guidance for cardiovascular disease, thereby satisfying clinical requests.
Owner:HUAZHONG UNIV OF SCI & TECH

Method and apparatus for imaging abdominal aorta and aortic aneurysms

The present invention is a technique and apparatus for acquiring anatomic information used in diagnosing and characterizing abdominal aortic aneurismal disease and the like. This technique provides anatomic information, in the form of images, using a combination of a plurality of magnetic resonance angiography sequences, including a spin-echo and four contrast enhanced (e.g., gadolinium) magnetic resonance angiography sequences. The anatomic images may be used in, for example, pre-operative, operative and post-operative evaluation of aortic pathology, including aneurysms, atherosclerosis, and occlusive disease of branch vessels such as the renal arteries. The gadolinium-enhanced magnetic resonance angiography provides sufficient anatomic detail to detect aneurysms and all relevant major branch vessel abnormalities seen at angiography operation. This technique and apparatus allows for imaging the aorta at a fraction of the cost of conventional aortography and without the risks of arterial catheterization or iodinated contrast.
Owner:PRINCE MARTIN R

System and method for adaptive bolus chasing computed tomography (CT) angiography

A method of utilizing bolus propagation and control for contrast enhancement comprises measuring with an imaging device a position of a bolus moving along a path in a biological structure. The method further comprises predicting a future position of the bolus using a simplified target model and comparing the predicted future position of the bolus with the measured position of the bolus. A control action is determined to eliminate a discrepancy, if any, between the predicted position of the bolus and the measured position of the bolus and the relative position of the imaging device and the biological structure is adaptively adjusted according to the control action to chase the motion of the bolus.
Owner:IOWA RES FOUND UNIV OF

X-ray diagnostic device

There is described an X-ray diagnostic device for performing cephalometric, dental or orthopedic examinations on a patient who is seated or standing. The X-ray diagnostic device comprises an X-ray emitter and an image detector embodied as a flat-panel detector that are arranged situated opposite each other on an orbitally moveable mount. The X-ray diagnostic device further comprises means for adjusting the height of the X-ray emitter and the image detector, a digital image system for recording a projection image using rotation angiography, a device for image processing for reconstructing the projection image into a 3D volume image; and a device for correcting physical effects or artifacts for representing soft tissue in the projection image and in the 3D volume image reconstructed therefrom.
Owner:SIEMENS HEALTHCARE GMBH

System and method for performing a three-dimensional virtual examination of objects, such as internal organs

InactiveUS20070276225A1Efficiently store and recallImage enhancementImage analysisImage resolutionCystoscopy
Methods for generating a three-dimensional visualization image of an object, such as an internal organ, using volume visualization techniques are provided. The techniques include a multi-scan imaging method; a multi-resolution imaging method; and a method for generating a skeleton of a complex three dimension object. The applications include virtual cystoscopy, virtual laryngoscopy, virtual angiography, among others.
Owner:THE RES FOUND OF STATE UNIV OF NEW YORK

Vascular data processing and image registration systems, methods, and apparatuses

In part, the invention relates to processing, tracking and registering angiography images and elements in such images relative to images from an intravascular imaging modality such as, for example, optical coherence tomography (OCT). Registration between such imaging modalities is facilitated by tracking of a marker of the intravascular imaging probe performed on the angiography images obtained during a pullback. Further, detecting and tracking vessel centerlines is used to perform a continuous registration between OCT and angiography images in one embodiment.
Owner:LIGHTLAB IMAGING

System for visualizing regions of Interest in medical images

A system for visualizing vascular fluid flow concentration includes at least one repository including a plurality of stored angiography scenes, an angiography scene comprises a plurality of individual images of a vascular structure successively acquired over a time period. A user interface control device enables a user to determine, (a) a duration and (b) a start time relative to a start time of the time period, of a window of interest within the time period. A control processor is electrically coupled to the user interface control device and the at least one repository. Control processor automatically assigns a unique visual indicator representing contrast flow of fluid through vessels to individual images within the user determined duration of the time period. A display processor, electrically coupled to the control processor and the user interface control device and at least one repository, generates data representing at least one display image comprising a composite image including individual images within the user determined duration of the time period having a unique assigned visual indicator.
Owner:SIEMENS HEALTHCARE GMBH

X-ray diagnostic apparatus and image processing apparatus

An image processing apparatus includes a storage unit which stores the data of a plurality of images in an angiography sequence, and a computation unit which generates a reference time density curve concerning a reference region set in a blood supply region to a blood supplied region and a plurality of time density curves concerning a plurality of local regions set in the blood supplied region on the basis of the data of a plurality of images, and computes a plurality of indexes respectively representing the correlations of the plurality of time density curves with respect to the reference time density curve.
Owner:TOSHIBA MEDICAL SYST CORP

Carotid sheath with flexible distal section

The present invention is a carotid sheath that has a proximal portion that is stiffer than the distal portion of the sheath as a result of the proximal portion having a higher durometer of the outer plastic coating of the sheath's proximal portion with a lower durometer for the plastic coating on the more flexible distal portion of the sheath. Another means to increase the flexibility of the sheath's distal portion compared to a stiffer proximal portion is by having a slightly smaller outside diameter for the outer plastic coating of the distal portion of the sheath. A more flexible distal portion of the sheath allows easier access for angiography, angioplasty or stenting when the sheath is used to access the tortuous path encountered when entering the carotid arteries.
Owner:FISCHELL INNOVATIONS

Computation of Hemodynamic Quantities From Angiographic Data

ActiveUS20140024932A1Medical simulationHealth-index calculationAngio ctComputational hemodynamics
Methods for computing hemodynamic quantities include: (a) acquiring angiography data from a patient; (b) calculating a flow and / or calculating a change in pressure in a blood vessel of the patient based on the angiography data; and (c) computing the hemodynamic quantity based on the flow and / or the change in pressure. Systems for computing hemodynamic quantities and computer readable storage media are described.
Owner:SIEMENS HEALTHCARE GMBH

Measurement of blood flow dynamics with x-ray computed tomography: dynamic ct angiography

In various embodiments, systems and methods can provide accurate measurements of blood flow dynamics in a subject. Projection data acquired during a computed tomography (CT) scan of the subject can be used to determine information representing inflow of a contrast material. Accordingly, a measurement of flow velocity, in addition to other aspects of flow, may be obtained from the projection data.
Owner:RGT UNIV OF CALIFORNIA

Combined photocoagulation and photodynamic therapy

A method for treating a lesion of an animal, the animal having at least one vessel that carries blood to the lesion, comprising locating the vessel, administering a composition comprising a photodynamic agent, applying energy to the vessel to photocoagulate the vessel and thereby reduce the rate at which the treatment composition exits said lesion and applying energy to said lesion, of a type and an amount sufficient to excite the photodynamic agent, causing the lesion to undergo photodynamic therapy. Preferably, a dye that is both a fluorescent dye and a radiation absorbing dye, such as indocyanine green dye, is added to the treatment composition to allow (a) confirmation of the presence of the treatment composition in the lesion to be detected by fluorescent angiography and (b) the rate of blow flow to be reduced in the blood vessel feeding the lesion using dye enhanced photocoagulation.
Owner:NOVADAG TECH INC

Method and apparatus for segmenting structure in CT angiography

The present invention provides a technique for automatically generating bone shielding (82) in CTA angiography. This technique can preprocess the image data set (70) to perform various functions, such as removing (90) the image data associated with the table top, cutting (92) the volume into regionally consistent sub-volumes, calculating according to the gradient ( 110) Structure edges, and / or computing (112) seed points for subsequent region growing. The preprocessed data can then be automatically segmented for bone and vascular structures (78). This automatic vessel segmentation (118) can be accomplished using suppression region growing, where the suppression is dynamically updated according to the local statistics of the image data. The vasculature (78) may be subtracted (80) from the bone structure (76) to generate a bone shield (82). The bone mask (82) may in turn be subtracted (84) from the image dataset (70) to generate a boneless CTA volume (86) for volume-rendered reconstruction.
Owner:GENERAL ELECTRIC CO
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products