Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

388 results about "Circular orbit" patented technology

A circular orbit is the orbit with a fixed distance around the barycenter, that is, in the shape of a circle. Below we consider a circular orbit in astrodynamics or celestial mechanics under standard assumptions. Here the centripetal force is the gravitational force, and the axis mentioned above is the line through the center of the central mass perpendicular to the plane of motion.

Read/write head including displacement generating means that elongates and contracts by inverse piezoelectric effect of electrostrictive effect

A read/write head includes a slider provided with an electromagnetic transducer element (or an optical module), an actuator, and a suspension. The actuator includes a fixed part, a movable part, and at least two beam members for coupling them together. The beam members have a displacement generating means that elongates and contracts by inverse piezoelectric effect or electrostrictive effect. The fixed part is fixed to the suspension, and the movable part is fixed to the slider. Upon the elongation and contraction of the displacement generator, the displacement generator deflects and the movable part displaces linearly, circularly or rotationally with respect to the fixed part, and the electromagnetic transducer element displaces in a linear or circular orbit, so that the electromagnetic transducer element intersects recording tracks. In the actuator, the fixed part, movable part and beam members are formed as an integrated single piece by providing a hole and/or a cutout in a sheet-like member constructed of a piezoelectric or electrostrictive material. The actuator of the structure illustrated is used for the positioning of a direction intersecting recording tracks. In this case, the total sum of voltages applied on the displacement generating means is controlled in such a manner that it is constant at any time, thereby controlling position fluctuations of the electromagnetic transducer element in the direction vertical to the recording medium surface.
Owner:TDK CORPARATION

Method of and system for intravenous volume tomographic digital angiography imaging

A method of and system for performing intravenous tomographic digital angiography imaging which combines the principles of intravenous digital angiography with those of cone-beam volume tomography for generating a direct, unambiguous and accurate 3-D reconstruction of stenosis and other irregularities and malformations from 2-D cone-beam tomography projections is disclosed in which several different data acquisition geometries, such as a circle-plus-arc data acquisition geometry, may be utilized to provide a complete set of data so that an exact 3-D reconstruction is obtained. Only a single IV contrast injection with a short breathhold by the patient is needed for use with a volume CT scanner which uses a cone-beam x-ray source and a 2-D detector for fast volume scanning in order to provide true 3-D descriptions of vascular anatomy with more than 0.5 lp/mm isotropic resolution in the x, y and z directions is utilized in which one set of cone-beam projections is acquired while rotating the x-ray tube and detector on the CT gantry and then another set of projections is acquired while tilting the gantry by a small angle. The projection data is preweighted and the partial derivatives of the preweighted projection data are calculated. Those calculated partial derivatives are rebinned to the first derivative of the Radon transform, for both the circular orbit data and the arc orbit data. The second partial derivative of the Radon transform is then calculated and then the reconstructed 3-D images are obtained by backprojecting using the inverse Radon transform.
Owner:UNIVERSITY OF ROCHESTER

Cycloidal rotor with non-circular blade orbit

A cycloidal rotor system having airfoil blades travelling along a generally non-circular, elongated and, in most embodiments, dynamically variable orbit. Such non-circular orbit provides a greater period in each revolution and an optimized relative wind along the trajectory for each blade to efficiently maximize lift when orbits are elongated horizontally, or thrust / propulsion when orbits are vertically elongated. Most embodiments, in addition to having the computer system controlled actuators to dynamically vary the blade trajectory and the angle of attack, can also have the computer system controlled actuators for dynamically varying the spatial orientation of the blades; enabling their slanting motion upward / downward and / or backsweep / forwardsweep positioning to produce and precisely control a variety of aerodynamic effects suited for providing optimum performance for various operating regimes, counter wind gusts and enable the craft to move sideways. Thus a rotor is provided, which when used in a VTOL rotorcraft, will require lower engine power to match or exceed the operating performance of VTOL rotorcrafts equipped with prior art cycloidal rotors, this rotor also offers increased efficiency and decreased required power when used for generating the propulsive force for various vehicles or used as a fan.
Owner:OPTIVECTOR LTD

Reversing rotatory shaker movement

A shaker movement permits an arbitrary path of motion in a shaker's shaking action. The shaker movement comprises independent control over the "X" and "Y" directions of the shaking actions by a pair of track assemblies, each track assembly comprising a pair of fixed rods and a pair of sliding rods that are interconnected with each other in a rectangular, grid-like pattern. Motion in both directions can be driven by a single motor utilizing independent pulley-and-belt systems or by two synchronized motors which are connected to a sliding rod of each track assembly. By altering the relative amplitude, phase angle, and frequency between the "X" and "Y" directions, the shaking action can follow a desired path. The shaker path can be varied from the traditional circular orbital motion or linear motion, to a new group of shaking patterns in which the direction of the shaking movement can reverse. The new patterns of shaker movement cause the liquid being shaken to be more thoroughly mixed, with less power input, and at a lower angular frequency than is practical with traditional paths of motion. This results in higher rates of gas transfer to and from the liquid, resulting in greater growth of a bacterial culture, and for higher rates of mass transfer at equivalent levels of energy input.
Owner:BULL DANIEL

Device and method for detecting operation state of ultra-high-voltage transformer in transformer substation based on 3D infrared panoramic image

The invention discloses a device and method for detecting an operation state of an ultra-high-voltage transformer in a transformer substation based on a 3D infrared panoramic image, and aims to solve the problem that only parts of infrared thermal images of the transformer can be simultaneously obtained and a global temperature distribution thermal image of the transformer cannot be obtained when the operation state of the ultra-high-voltage transformer is detected traditionally. The device comprises a circular orbit paved around the transformer; the central axis of the transformer passes through the circle centre of the circular orbit; an intelligent controllable trolley is arranged on the circular orbit; a camera is arranged on the intelligent controllable trolley through a bracket; the camera comprises an infrared camera and a visible light camera; a panoramic fused image is formed by utilizing an image fusion technology; 3D left and right eye images are generated; recoding is carried out; and finally, the image is output onto a touch monitoring screen. According to the invention, the real-time operation state of the transformer can be reflected vividly; the operation state of the transformer can be observed without a dead angle from different angles; and operation faults can be judged in time.
Owner:DATONG POWER SUPPLY COMPANY OF STATE GRID SHANXI ELECTRIC POWER +2

Device and method for detecting rotation state

The invention relates a method and a device for testing the rotation state of a rotating shaft. The device comprises a fixed disc, a rotating disc, Hall switches, magnetic elements and the like; n Hall switches and n+1 magnetic elements are respectively and uniformly distributed on circular orbits on the fixed disc and the rotating disc; a stator is fixedly connected with the fixed disc, the rotating shaft and the rotating disc respectively; the rotating shaft penetrates through circular holes in the fixed disc and the rotating disc. When the rotating shaft rotates for a 360/(n*(n+1)) angle each time relative to the stator, only one Hall switch in the n Hall switches is over against the magnetic elements so as to generate an impulse hop. State information, such as the rotating angle, the number of turns and the direction of the rotating shaft can be detected through correlation calculation by counting impulses generated by the Hall switches. According to the device and the method for detecting the rotation state of the rotating shaft, the rotation state of the rotating shaft can be obtained under a non-contact condition, the state information of the rotating shaft can be obtained in the rotation state measurement and application having lower requirement on precision, and thus the device is small in size, simple in structure and easy to mount.
Owner:SHANGHAI UNIV OF SPORT

Tangential low-thrust in-orbit circular orbit calibration method based on (Global Navigation Satellite System) GNSS precise orbit determination

ActiveCN103940431AThe method calibration results are accurateMethod calibration results are reliableInstruments for comonautical navigationApparatus for force/torque/work measurementNODALIntersection of a polyhedron with a line
The invention provides a tangential low-thrust in-orbit circular orbit calibration method based on (Global Navigation Satellite System) GNSS precise orbit determination. The calibrated tangential thrust F is used for controlling a spacecraft orbit, and the tangential low-thrust in-orbit circular orbit calibration method is characterized by comprising the following steps: measuring by utilizing a GNSS to obtain the spacecraft position information, and performing a Unscented Kalman filtering method to obtain estimated values of spacecraft position and velocity information under a J2000 coordinate system; calculating an instantaneous orbit semi-major axis of a spacecraft according to the estimated values of the spacecraft position and the velocity information; averaging the instantaneous orbit semi-major axis in the orbital nodal period before each measurement moment to obtain the average orbit semi-major axis at the moment; and subtracting the average orbit semi-major axes before and after the action of the tangential thrust of a circular orbit to obtain orbit semi-major axis variation delta a, and calculating the tangential thrust calibration value of the circular orbit according to the delta a. In the calculation process, the GNSS is completely used to obtain the real-time orbital data without data support of a ground station, and the calibration method has accurate and reliable result and simplicity in calculation and is easy to realize.
Owner:BEIJING INST OF SPACECRAFT SYST ENG

Kingdon mass spectrometer with cylindrical electrodes

The invention relates to measuring devices of an electrostatic Fourier transform mass spectrometer and measurement methods for the acquisition of mass spectra with high mass resolution. The measuring device includes electrostatic measuring cells according to the Kingdon principle, in which ions can, when appropriate voltages are applied, orbit on circular trajectories around the cylinder axis between two concentric cylindrical surfaces, which are composed of specially shaped sheath electrodes, insulated from each other by parabolic gaps, and can harmonically oscillate in the axial direction, independently of their orbiting motion. In the longitudinal direction, the two cylindrical surfaces of the measuring cell are divided by the parabolic separating gaps into different types of double-angled and tetragonal sheath electrode segments. Appropriate voltages at the sheath electrode segments generate a potential distribution between the two concentric cylindrical surfaces which forms a parabolic potential well in the axial direction for orbiting ions. The ion clouds oscillating harmonically in the axial direction in this potential well induce image currents in suitable electrodes, from which the oscillation frequencies can be determined by Fourier analyses.
Owner:BRUKER DALTONIK GMBH & CO KG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products