Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

992 results about "Flexural modulus" patented technology

In mechanics, the flexural modulus or bending modulus is an intensive property that is computed as the ratio of stress to strain in flexural deformation, or the tendency for a material to resist bending. It is determined from the slope of a stress-strain curve produced by a flexural test (such as the ASTM D790), and uses units of force per area. For a 3-point test of a rectangular beam behaving as an isotropic linear material, where w and h are the width and height of the beam, I is the second moment of area of the beam's cross-section, L is the distance between the two outer supports, and d is the deflection due to the load F applied at the middle of the beam, the flexural modulus: Ebₑₙd=L³F/4wh³d From elastic beam theory d=L³F/48IE and for rectangular beam I=1/12wh³ thus Ebₑₙd=E (Elastic modulus) Ideally, flexural or bending modulus of elasticity is equivalent to the tensile modulus (Young's modulus) or compressive modulus of elasticity.

Medical tubing having variable characteristics and method of making same

The invention primarily is directed to a medical tubing adapted for insertion into a body tissue or cavity and method of manufacturing different variations of the tubing along a length of the tubing. The tubing comprises a plurality of individual, discrete, generally ring-shaped elements arranged in series and fused or bonded together forming a continuous tubular structure. The ring-shaped elements may be formed of a thermoplastic or a thermoset material. The ring-shaped elements may include plastic rings, metallic rings, un-reinforced plastic rings and/or metal reinforced plastic rings assembled along the length of the tubular structure to provide variable flexibility and kink-resistance. The tubular structure may have a cross-section of any geometric shape and it may be bent, twisted or curved without kinking. The ring-shaped elements may have different flexural modulus. The ring-shaped elements may include a combination of flexible and rigid ring-shaped elements assembled along different portions or sections of the tubular structure. The ring-shaped elements may be metallic and may be bonded with a resilient, flexible elastomeric adhesive, wherein the ring-shaped elements may have different lengths and may be fused closer or further apart to one another depending on the characteristics of a portion or section of the tubing. In another aspect of the invention, the medical tubing may further comprise a secondary lumen and a pull wire to control the tubular structure. The ring-shaped elements may be truncated to provide a bending bias. In another aspect of the invention, the ring-shaped elements may vary in diameter and/or composition in different portions or sections of the tubular structure. In yet another aspect of the invention, some of the ring-shaped elements may be radiopaque, or the ring-shaped elements may comprise of different colors to operate as indicators along the tubular structure.
Owner:APPL MEDICAL RESOURCES CORP

Lightweight thermoplastic composite including reinforcing skins

A lightweight fiber reinforced thermoplastic composite having an improved combination of surface roughness, flexural and shear characteristics. The composite generally comprises a fiber reinforced thermoplastic core containing reinforcing fibers bonded together with a first thermoplastic resin in which the core has a first surface and a second surface and at least one first skin applied to the first surface. The first skin comprises a plurality of fibers bonded together with a second thermoplastic resin, with the fibers in each first skin aligned in a unidirectional orientation within the first skin. The composite satisfies at least one of the conditions: an average surface roughness of the outer surface of the first skin is equal to or less than about 4.0 μm/10 mm; the flexural modulus and strength are greater than about 10,000 MPa and greater than about 180 MPa, respectively; and the shear modulus and strength are greater than about 3,000 MPa and greater than about 100 MPa, respectively. In another embodiment, a fiber reinforced thermoplastic composite comprises a fiber reinforced thermoplastic core containing reinforcing fibers bonded together with a first thermoplastic resin, the core having a density of about 0.1 gm/cc to about 2.25 gm/cc and a porosity greater than about 0% by volume. The core has a first surface and a second surface and at least one first skin applied to the first surface, each of the first skins comprising fibers bonded together with a second thermoplastic resin. The first skin comprises a thermoplastic melt impregnated continuous fiber prepreg material, or commingled fiber rovings comprising reinforcing fibers and thermoplastic fibers, with the fibers in the first skin aligned in a unidirectional orientation within the first skin.
Owner:AZDEL INC

Closure lockdown assemblies and methods utilizing active materials

In combination with a vehicle and a closure, one or more lockdown regions disposed between the closure and the vehicle body, the one or more lockdown includes a device including an active material disposed in operative communication with the closure and the vehicle body, wherein the active material includes a shape memory alloy, a magnetic shape memory material, a shape memory polymer, a magnetorheological fluid, an electroactive polymer, a magnetorheological elastomer, an electrorheological fluid, a piezoelectric material, or combinations comprising at least one of the foregoing active materials; and an activation device coupled to the active material, the activation device being operable to selectively provide an activation signal to the active material and effectuate a change in a dimension, a shape, and / or a flexural modulus property of the active material, wherein the change in the dimension, a shape, and / or flexural modulus of the active material locks down or releases the closure from the vehicle. Such active materials include shape memory alloys, magnetic shape memory alloys, electroactive polymers, shape memory polymers, magnetorheological fluids, magnetorheological elastomers, electrorheological fluids, and piezoelectric materials. Also provided herein are methods for selectively stiffening a closure hingeably attached to a vehicle body.
Owner:GM GLOBAL TECH OPERATIONS LLC

Low coefficient of thermal expansion thermoplastic resin composition, preparation method and application thereof

The invention belongs to the technical field of high polymer materials, and discloses low coefficient of thermal expansion thermoplastic resin composition, a preparation method and application of the low coefficient of thermal expansion thermoplastic resin composition. The resin composition is composed of, by weight, 340 to 900 parts of thermoplastic resin, 100 to 500 parts of carbon fibers, 0 to 5 parts of antioxygen, 0 to 5 parts of lubricating agent and 0 to 150 parts of flexibilizer. The preparation method comprises adding the 340 to 900 parts of the thermoplastic resin, the 0 to 5 parts of the antioxygen, 0 to 5 parts of the lubricating agent and the 0 to 150 parts of the flexibilizer to a high mixing machine to mix for 1 to 30 min, adding the mixture to a double-screw extruder, adding the 100 to 500 parts of the carbon fibers from the glass fiber feeding port or the side feeding port of the double-screw extruder to mix evenly, and carrying out extruding, dragging and prilling on mixed materials in the double-screw extruder to obtain the low coefficient of thermal expansion thermoplastic resin composition. The use of the low coefficient of thermal expansion thermoplastic resin composition applied to the fittings of a metal piece is provided. The thermoplastic resin is high in flexural modulus, tensile strength and impact strength, and low in linear expansion coefficient.
Owner:HEFEI GENIUS NEW MATERIALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products