Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

22406results about "Superstructure subunits" patented technology

Laminated structures with multiple denier polyester core fibers, randomly oriented reinforcement fibers, and methods of manufacture

InactiveUS6156682AEnhanced sound absorption and structural propertySynthetic resin layered productsLaminationFiberPolyester
A laminated panel-type structure particularly suited for vehicle interior applications such as headliners and door panels has a multiple denier polyester fiber core and randomly oriented structural reinforcing fibers. The laminated structure has superior sound attenuation properties resulting from a core of intertwined polyester fibers of differing deniers, with preferably relatively larger denier fibers on exterior areas of the core and some bicomponent fibers, short non-woven reinforcing fiber strands which are randomly attached and intertwined with the core on opposing major sides of the core, an impervious polymer film with a low melt layer which retains the reinforcing fibers against one side of the core and is attached to a scrim layer, and a polymer web on an opposite side of the core which retains the reinforcing fiber strands on the opposing major side of the core and to which a cover stock is applied. The invention further includes a method of manufacturing the laminated structure wherein the various layers are sequentially unfurled from spools, passed through nip rollers at points of various subcombinations of materials and layers, the reinforcing fiber strands are randomly distributed on to the carrying layers from hoppers or directly from a fiber chopping device, and the completed laminated structure is cut and molded.
Owner:SK AUTOMOTIVE S DE R L DE

Vehicle interior trim panel with a soft-touch foam layer, and a method and apparatus for making the same

An interior trim component such as a vehicle dashboard includes a substantially rigid and form-stable substrate of polypropylene and natural fibers, a supporting halo skeleton and other frame components heat fused onto the backside of the substrate, and a polyolefin foam layer as well as a decorative polyolefin cover film laminated onto the front side of the substrate. The foam layer has an increased thickness and a decreased foam density at sharply contoured or curved areas of the trim component, in comparison to the flat surfacial areas. As a result, the trim component has a desirable soft-touch characteristic and impact absorbing properties at all areas including protruding curves and edges. A method for forming such a trim component involves steps of pre-molding the foam layer and cover film by vacuum thermoforming, pre-molding the substrate by vacuum thermoforming, and then heat laminating the pre-heated, pre-molded substrate onto the pre-molded foam layer and cover film. The sharply curved or contoured areas of the component are provided with a greater tolerance spacing between the substrate and the cover film, which are held to the respective mold contours by vacuum. Under the effect of heat and the applied vacuum, the foam layer expands to have a greater thickness and a lower density in these sharply contoured areas.
Owner:HERBERT OLBRICH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products