Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

433results about How to "Improve switching characteristics" patented technology

Natural-superlattice homologous single crystal thin film, method for preparation thereof, and device using said single crystal thin film

Disclosed is a natural-superlattice homologous single-crystal thin film, which includes a complex oxide which is epitaxially grown on either one of a ZnO epitaxial thin film formed on a single-crystal substrate, the single-crystal substrate after disappearance of the ZnO epitaxial thin film and a ZnO single crystal. The complex oxide is expressed by the formula: M1M2O3 (ZnO)m, wherein M1 is at least one selected from the group consisting of Ga, Fe, Sc, In, Lu, Yb, Tm, Er, Ho and Y, M2 is at least one selected from the group consisting of Mn, Fe, Ga, In and Al, and m is a natural number of 1 or more. A natural-superlattice homologous single-crystal thin film formed by depositing the complex oxide and subjecting the obtained layered film to a thermal anneal treatment can be used in optimal devices, electronic devices and X-ray optical devices.
Owner:HOYA CORP +1

Semiconductor device

InactiveUS20110089417A1Excellent switching characteristicExcellent semiconductor device can be madeSolid-state devicesSemiconductor/solid-state device manufacturingOxide semiconductorOxide
An objet of the present invention is to provide a semiconductor device with a new structure. Disclosed is a semiconductor device including a first transistor which includes a channel formation region on a substrate containing a semiconductor material, impurity regions formed with the channel formation region interposed therebetween, a first gate insulating layer over the channel formation region, a first gate electrode over the first gate insulating layer, and a first source electrode and a first drain electrode which are electrically connected to the impurity region; and a second transistor which includes a second gate electrode over the substrate containing a semiconductor material, a second gate insulating layer over the second gate electrode, an oxide semiconductor layer over the second gate insulating layer, and a second source electrode and a second drain electrode which are electrically connected to the oxide semiconductor layer.
Owner:SEMICON ENERGY LAB CO LTD

Display device, manufacturing method thereof, and television set

A manufacturing method of a display device having TFTs capable of high-speed operation with few variations of threshold voltage is provided, in which materials are used with high efficiency and a small number of photomasks is required. The display device of the invention comprises a gate electrode layer and a pixel electrode layer formed over an insulating surface, a gate insulating layer formed over the gate electrode layer, a crystalline semiconductor layer formed over the gate insulating layer, a semiconductor layer having one conductivity type formed in contact with the crystalline semiconductor layer, a source electrode layer and a drain electrode layer formed in contact with the semiconductor layer having one conductivity type, an insulating later formed over the source electrode layer, the drain electrode layer, and the pixel electrode layer, a first opening formed in the insulating layer to reach the source electrode layer or the drain electrode layer, a second opening formed in the gate insulating layer and the insulating layer to reach the pixel electrode layer, and a wiring layer formed in the first opening and the second opening to electrically connect the source electrode layer or the drain electrode layer to the pixel electrode layer.
Owner:SEMICON ENERGY LAB CO LTD

Means and Methods for Improving the Handover Characteristics of Integrated Radio Access Networks

The invention provides a method for assisting handover of a user terminal's, UT's, communication session in an integrated multi RAT network, said method to be carried out by an RNCI being installed in said network, said method comprising the following steps:— receiving a “Handover Candidate” message comprising a message type identifier information element identifying said message as being a “Handover Candidate” message and which message identifies said session and which message further identifies a candidate RNC of said network, wherein said candidate RNC constitutes an RNC handover candidate for said session,— establishing the identity of said RNC by investigating said message,— associating said communication session with said candidate RNC identified in the previous step. The invention provides an RNC1, RNC2, and software, realising the method according to the invention.
Owner:TELEFON AB LM ERICSSON (PUBL)

Improved on/off ratio for non-volatile memory device and method

This application describes a method of forming a switching device. The method includes forming a first dielectric material overlying a surface region of a substrate. A bottom wiring material is formed overlying the first dielectric material and a switching material is deposited overlying the bottom wiring material. The bottom wiring material and the switching material is subjected to a first patterning and etching process to form a first structure having a top surface region and a side region. The first structure includes at least a bottom wiring structure and a switching element having a top surface region including an exposed region of the switching element. A second dielectric material is formed overlying at least the first structure including the exposed region of the switching element. The method forms a first opening region in a portion of the second dielectric layer to expose a portion of the top surface region of the switching element. A dielectric side wall structure is formed overlying a side region of the first opening region. A top wiring material including a conductive material is formed overlying at lease the top surface region of the switching element such that the conductive material is in direct contact with the switching element. The side wall spacer reduces a contact area for the switching element and the conductive material and thus a reduced active device area for the switching device. In a specific embodiment, the reduced area provides for an increase in device ON / OFF current ratio.
Owner:CROSSBAR INC

Electrode structure having at least two oxide layers and non-volatile memory device having the same

An electrode structure having at least two oxide layers that more reliably switch and operate without the use of additional devices and a non-volatile memory device having the same are provided. The electrode structure may include a lower electrode, a first oxide layer formed on the lower electrode, a second oxide layer formed on the first oxide layer and an upper electrode formed on the second oxide layer wherein at least one of the first and second oxide layers may be formed of a resistance-varying material. The first oxide layer may be formed of an oxide having a variable oxidation state.
Owner:SAMSUNG ELECTRONICS CO LTD

Nitride semiconductor device and method for fabricating the same

A nitride semiconductor device includes: a first nitride semiconductor layer; a second nitride semiconductor layer formed on the first nitride semiconductor layer and having a wider band gap than the first nitride semiconductor layer; and a third nitride semiconductor layer formed on the second nitride semiconductor layer. A region of the third nitride semiconductor layer located below the gate electrode is formed with a control region having a p-type conductivity, and a region of the third nitride semiconductor layer located between the gate electrode and each of the source electrode and the drain electrode is formed with a high resistive region having a higher resistance than the that of the control region.
Owner:PANASONIC CORP

Handover Optimisation in a Wlan Radio Access Network

The invention provides a method for assisting handover of a communication session associated with a UT from a first radio access point, AP1, to a second radio access point, AP2, in a radio access network, said method to be carried out by said AP1 and comprising the steps of:—receiving a handover intention notify message comprising a session identifier identifying said session and indicating that said UT intends to perform a session handover,—assigning said session a buffer memory space in a memory of said AP1,—buffering downlink data packets addressed to said UT in said buffer memory as a response on receiving said handover intention notify message. The invention further provides a UT, an AP1, AP2, an AR, and software program / s co-operating and / or realizing the method according to the invention. The invention provides a smoother handover.
Owner:TELEFON AB LM ERICSSON (PUBL)

Display device, manufacturing method thereof, and television set

A manufacturing method of a display device having TFTs capable of high-speed operation with few variations of threshold voltage is provided, in which materials are used with high efficiency and a small number of photomasks is required. The display device of the invention comprises a gate electrode layer and a pixel electrode layer formed over an insulating surface, a gate insulating layer formed over the gate electrode layer, a crystalline semiconductor layer formed over the gate insulating layer, a semiconductor layer having one conductivity type formed in contact with the crystalline semiconductor layer, a source electrode layer and a drain electrode layer formed in contact with the semiconductor layer having one conductivity type, an insulating later formed over the source electrode layer, the drain electrode layer, and the pixel electrode layer, a first opening formed in the insulating layer to reach the source electrode layer or the drain electrode layer, a second opening formed in the gate insulating layer and the insulating layer to reach the pixel electrode layer, and a wiring layer formed in the first opening and the second opening to electrically connect the source electrode layer or the drain electrode layer to the pixel electrode layer.
Owner:SEMICON ENERGY LAB CO LTD

Method for manufacturing display device

The present invention provides a method for manufacturing a display device having a TFT that can be operated at high speed while using a small number of photomasks and improving the utilization efficiency of materials, where the threshold value is difficult to be varied. In the invention, a catalytic element is applied to an amorphous semiconductor film and the amorphous semiconductor film is heated to form a crystalline semiconductor film. After removing the catalytic element from the crystalline semiconductor film, a top-gate type thin film transistor with a planar structure is manufactured. Moreover, by using the droplet discharging method where an element of a display device is formed selectively, the process can be simplified, and loss of materials can be reduced.
Owner:SEMICON ENERGY LAB CO LTD

Method for manufacturing semiconductor device

After a gate insulating film is formed over a gate electrode, in order to improve the quality of a microcrystalline semiconductor film which is formed in an early stage of deposition, a film near an interface with the gate insulating film is formed under a first deposition condition in which a deposition rate is low but the quality of a film to be formed is high, and then, a film is further deposited under a second deposition condition in which a deposition rate is high. Then, a buffer layer is formed to be in contact with the microcrystalline semiconductor film. Further, plasma treatment with a rare gas such as argon or hydrogen plasma treatment is performed before formation of the film under the first deposition condition for removing adsorbed water on a substrate.
Owner:SEMICON ENERGY LAB CO LTD

On/off ratio for non-volatile memory device and method

This application describes a method of forming a switching device. The method includes forming a first dielectric material overlying a surface region of a substrate. A bottom wiring material is formed overlying the first dielectric material and a switching material is deposited overlying the bottom wiring material. The bottom wiring material and the switching material is subjected to a first patterning and etching process to form a first structure having a top surface region and a side region. The first structure includes at least a bottom wiring structure and a switching element having a top surface region including an exposed region of the switching element. A second dielectric material is formed overlying at least the first structure including the exposed region of the switching element. The method forms a first opening region in a portion of the second dielectric layer to expose a portion of the top surface region of the switching element. A dielectric side wall structure is formed overlying a side region of the first opening region. A top wiring material including a conductive material is formed overlying at lease the top surface region of the switching element such that the conductive material is in direct contact with the switching element. The side wall spacer reduces a contact area for the switching element and the conductive material and thus a reduced active device area for the switching device. In a specific embodiment, the reduced area provides for an increase in device ON / OFF current ratio.
Owner:CROSSBAR INC

Semiconductor device and manufacturing method thereof

An object is to provide a semiconductor device with a novel structure. A semiconductor device includes a first transistor, which includes a channel formation region provided in a substrate including a semiconductor material, impurity regions, a first gate insulating layer, a first gate electrode, and a first source electrode and a first drain electrode, and a second transistor, which includes an oxide semiconductor layer over the substrate including the semiconductor material, a second source electrode and a second drain electrode, a second gate insulating layer, and a second gate electrode. The second source electrode and the second drain electrode include an oxide region formed by oxidizing a side surface thereof, and at least one of the first gate electrode, the first source electrode, and the first drain electrode is electrically connected to at least one of the second gate electrode, the second source electrode, and the second drain electrode.
Owner:SEMICON ENERGY LAB CO LTD

Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic couse of direct current voltage, into a alternating current voltage

An inverter is devised to avoid high-frequency voltages at input terminals and to allow good efficiency thanks to its simple and cost-optimized circuit layout. This is achieved by a method of converting a direct current voltage, more specifically from a photovoltaic source of direct current voltage, into an alternating current voltage at a frequency through a bridge circuit comprising switching elements (V1-V4) and free-wheeling elements (D1-D4), said switching elements (V1-V4) being on the one side gated at the frequency and on the other side clocked at a high clock rate, a direct current voltage circuit, an alternating current voltage circuit and a plurality of free-wheeling phases being provided. It is provided that, during the free-wheeling phases, the alternating current voltage circuit is decoupled from the direct current voltage circuit by means of a switching element disposed in the direct current voltage circuit, a free-wheeling current flowing through one of the free-wheeling elements (D1) in the bridge circuit when in the decoupled state.
Owner:SMA SOLAR TECH AG

Semiconductor device and manufacturing method thereof

An object is to provide a semiconductor device with a novel structure. A semiconductor device includes a first transistor, which includes a channel formation region provided in a substrate including a semiconductor material, impurity regions, a first gate insulating layer, a first gate electrode, and a first source electrode and a first drain electrode, and a second transistor, which includes an oxide semiconductor layer over the substrate including the semiconductor material, a second source electrode and a second drain electrode, a second gate insulating layer, and a second gate electrode. The second source electrode and the second drain electrode include an oxide region formed by oxidizing a side surface thereof, and at least one of the first gate electrode, the first source electrode, and the first drain electrode is electrically connected to at least one of the second gate electrode, the second source electrode, and the second drain electrode.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device

A semiconductor device includes: a semiconductor substrate; a vertical type trench gate MOS transistor; a Schottky barrier diode; multiple trenches having a stripe pattern to divide an inner region into first and second separation regions; and a poly silicon film in each trench. The first separation region includes a first conductive type region for providing a source and a second conductive type layer for providing a channel region. The first conductive type region is adjacent to a first trench. The poly silicon film in the first trench is coupled with a gate wiring. A second trench is not adjacent to the first conductive type region. The poly silicon film in the second trench is coupled with a source or gate wiring. The substrate in the second separation region is coupled with the source wiring for providing a Schottky barrier.
Owner:DENSO CORP

LCD device including a TFT for reducing leakage current

An amorphous-silicon TFT (thin-film-transistor) in an LCD device has a larger channel length at both the edge portions of the channel of the TFT compared to the central portion of the channel by forming chamfers at the corners of the source and drain electrodes. The larger channel length at both the edge portions reduces the leakage current caused by the turned-around light incident onto the channel.
Owner:HANNSTAR DISPLAY CORPORATION

Method for manufacturing display device

The present invention provides a method for manufacturing a display device having a TFT that can be operated at high speed while using a small number of photomasks and improving the utilization efficiency of materials, where the threshold value is difficult to be varied. In the invention, a catalytic element is applied to an amorphous semiconductor film and the amorphous semiconductor film is heated to form a crystalline semiconductor film. After removing the catalytic element from the crystalline semiconductor film, a top-gate type thin film transistor with a planar structure is manufactured. Moreover, by using the droplet discharging method where an element of a display device is formed selectively, the process can be simplified, and loss of materials can be reduced.
Owner:SEMICON ENERGY LAB CO LTD

Display device

To provide a display device in which plural kinds of circuits are formed over one substrate and plural kinds of transistors corresponding to characteristics of the plural kinds of circuits are provided. The display device includes a pixel portion and a driver circuit that drives the pixel portion over one substrate. The pixel portion includes a first transistor including a first oxide semiconductor film. The driver circuit includes a second transistor including a second oxide semiconductor film. The first oxide semiconductor film and the second oxide semiconductor film are formed over one insulating surface. A channel length of the first transistor is longer than a channel length of the second transistor. The channel length of the first transistor is greater than or equal to 2.5 micrometer.
Owner:SEMICON ENERGY LAB CO LTD

Method of converting a direct current voltage from a source of direct current voltage, more specifically from a photovoltaic source of direct current voltage, into a alternating current voltage

An inverter is devised to avoid high-frequency voltages at input terminals and to allow good efficiency thanks to its simple and cost-optimized circuit layout. This is achieved by a method of converting a direct current voltage, more specifically from a photovoltaic source of direct current voltage, into an alternating current voltage at a frequency through a bridge circuit comprising switching elements (V1-V 4) and free-wheeling elements (D1-D4), said switching elements (V1-V4) being on the one side gated at the frequency and on the other side clocked at a high clock rate, a direct current voltage circuit, an alternating current voltage circuit and a plurality of free-wheeling phases being provided. It is provided that, during the free-wheeling phases, the alternating current voltage circuit is decoupled from the direct current voltage circuit by means of a switching element disposed in the direct current voltage circuit, a free-wheeling current flowing through one of the free-wheeling elements (D1) in the bridge circuit when in the decoupled state.
Owner:SMA SOLAR TECH AG

Transparent Memory for Transparent Electronic Device

The present invention relates to a transparent memory for a transparent electronic device. The transparent memory includes: a lower transparent electrode layer that is sequentially formed on a transparent substrate, and a data storage region and an upper transparent layer which are made of at least one transparent resistance-variable material layer. The transparent resistance-variable material layer has switching characteristics as a result of the resistance variance caused by the application of a certain voltage between the lower and upper transparent electrode layers. An optical band gap of the transparent resistance-variable material layer is 3 eV or more, and transmittivity of the material layer for visible rays is 80% or more. The invention provides transparent and resistance-variable memory that: has very high transparency and switching characteristics depending on resistance variation at a low switching voltage, and can maintain the switching characteristics thereof after a long time elapses.
Owner:KOREA ADVANCED INST OF SCI & TECH

Semiconductor device and manufacturing method thereof

A structure by which electric-field concentration which might occur between a source electrode and a drain electrode in a bottom-gate thin film transistor is relaxed and deterioration of the switching characteristics is suppressed, and a manufacturing method thereof. A bottom-gate thin film transistor in which an oxide semiconductor layer is provided over a source and drain electrodes is manufactured, and angle θ1 of the side surface of the source electrode which is in contact with the oxide semiconductor layer and angle θ2 of the side surface of the drain electrode which is in contact with the oxide semiconductor layer are each set to be greater than or equal to 20° and less than 90°, so that the distance from the top edge to the bottom edge in the side surface of each electrode is increased.
Owner:SEMICON ENERGY LAB CO LTD

Air compressor

InactiveUS20090194177A1Improvement of switchSimplify measurementPositive displacement pump componentsCombustion enginesEngineeringAir compressor
According to the invention, an air compressor includes: one pair of air tanks arranged parallel to each other by being separated from each other in a constant interval, for storing thereinto compressed air; a compressing unit that compresses air sucked from an external space so as to supply the compressed air to the air tanks; and a motor coupled to the compressing unit so as to drive the compressing unit, while the motor and the compressing unit are arranged above the one pair of air tanks; wherein: a cooling fan that generates cooling wind is provided on one end of a rotation shaft of the motor; and a control circuit unit that drives the motor is arranged above the one pair of air tanks and at a position which is overlapped with an axial direction projection area of the cooling fan.
Owner:HITACHI KOKI CO LTD

Liquid crystal device

A liquid crystal device is constituted by a pair of substrates each provided with an axis for aligning liquid crystal molecules in a uniaxial aligning direction, and a liquid crystal composition disposed between the pair of substrates and comprising at least a liquid crystal and an aligned gel-forming compound forming a gel with the liquid crystal. The gel-forming compound is aligned in a direction substantially parallel or perpendicular to the uniaxial aligning direction.
Owner:CANON KK

Switched reluctance motor

A switched reluctance motor has a rotor and a stator. The stator has first and second stator magnetic pole groups sequentially placed in an axial direction of the rotor. First and second stator magnetic poles in each group are alternately arranged on a same circumference. The first stator magnetic poles are placed every electrical angle 2π and reversely magnetized to each other. The second stator magnetic poles are placed every electrical angle 2π and reversely magnetized to each other. The first magnetic pole is apart from the second magnetic pole by electrical angle π. Each stator magnetic pole in the first stator magnetic pole group is apart from that in the second magnetic pole group by electrical angle π / 2 in the circumferential direction.
Owner:DENSO CORP

Atomic layer deposition of metal oxides for memory applications

Embodiments of the invention generally relate to nonvolatile memory devices and methods for manufacturing such memory devices. The methods for forming improved memory devices, such as a ReRAM cells, provide optimized, atomic layer deposition (ALD) processes for forming a metal oxide film stack which contains at least one hard metal oxide film (e.g., metal is completely oxidized or substantially oxidized) and at least one soft metal oxide film (e.g., metal is less oxidized than hard metal oxide). The soft metal oxide film is less electrically resistive than the hard metal oxide film since the soft metal oxide film is less oxidized or more metallic than the hard metal oxide film. In one example, the hard metal oxide film is formed by an ALD process utilizing ozone as the oxidizing agent while the soft metal oxide film is formed by another ALD process utilizing water vapor as the oxidizing agent.
Owner:SANDISK TECH LLC +2

Thin film transistor substrate

A main object of the present invention is to provide a TFT substrate having excellent switching characteristics. The object is attained by providing a thin film transistor substrate comprising: a substrate, and a thin film transistor having an oxide semiconductor layer that is formed on the substrate and is formed from an oxide semiconductor, and a semiconductor layer-adjoining insulating layer formed to be in contact with the oxide semiconductor layer, wherein at least one semiconductor layer-adjoining insulating layer included in the thin film transistor is a photosensitive polyimide insulating layer formed by using a photosensitive polyimide resin composition.
Owner:DAI NIPPON PRINTING CO LTD

Resistive Random Access Memory Access Cells Having Thermally Isolating Structures

Provided are resistive random access memory (ReRAM) cells including resistive switching layers and thermally isolating structures for limiting heat dissipation from the switching layers during operation. Thermally isolating structures may be positioned within a stack or adjacent to the stack. For example, a stack may include one or two thermally isolating structures. A thermally isolating structure may directly interface with a switching layer or may be separated by, for example, an electrode. Thermally isolating structures may be formed from materials having a thermal conductivity of less than 1 W / m*K, such as porous silica and mesoporous titanium oxide. A thermally isolating structure positioned in series with a switching layer generally has a resistance less than the low resistance state of the switching layer. A thermally isolating structure positioned adjacent to a switching layer may have a resistance greater than the high resistance state of the switching layer.
Owner:INTERMOLECULAR +2
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products