Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

133 results about "Boundary element method" patented technology

The boundary element method (BEM) is a numerical computational method of solving linear partial differential equations which have been formulated as integral equations (i.e. in boundary integral form). including fluid mechanics, acoustics, electromagnetics (Method of Moments), fracture mechanics, and contact mechanics.

Method of boundary element utilizing polar wave S transform energy ratio to determine ultra high-voltage direct current transmission line fault

The invention relates to a method of a boundary element utilizing polar wave S transform energy ratio to determine ultra high-voltage (UHV) direct current (DC) transmission line faults, belonging to the technical field of power system relay protection. The method is as follows: a starting element is started when a DC line breaks down, the polar wave voltages of the positive and negative lines are calculated according to dipolar DC voltages and DC currents measured at a protective installation part; a discrete polar wave voltage signal the sampling sequence length of which is 200 after faults is subjected to S transform, the transform result is a 101*200 time-frequency complex matrix, and mode operation is carried out on each element in the complex matrix. High-frequency component and low-frequency component of the polar wave voltage are extracted according to the obtained modular matrix, and then the ratio of the high-frequency energy to the low-frequency energy of the polar wave voltage is figured out; and whether the fault is interior or exterior is distinguished according to the value of the ratio of the high-frequency energy to the low-frequency energy. A large number of simulation results show that the invention has good effect.
Owner:KUNMING UNIV OF SCI & TECH

Power flow-boundary element model based elevated rail traffic vibratory-noise simulating and predicting method

The invention relates to a power flow-boundary element model based elevated rail traffic vibratory-noise simulating and predicting method. The power flow-boundary element model based elevated rail traffic vibratory-noise simulating and predicting method comprehensively considers bridge noise and steel-rail noise of the medium-frequency range (200-1000Hz) in elevated rail traffic, and is higher in noise prediction accuracy than that of a method only considering bridge noise or steel-rail noise. The method includes firstly establishing a rail- bridge system power flow model, calculating input power of bridges and vibration speed of steel rails when harmonic force units different in frequency act on the steel rails; secondly, calculating wheel-rail contact force spectrum under a wheel-rail-bridge coupling system through a wheel-rail combination roughness spectrum so as to obtain vibration states of the bridges and the steel rails under the action of random wheel-rail force; thirdly, respectively establishing an acoustic-radiation two-dimension finite-element-boundary element weak-coupling model for the bridges and the steel rails, and calculating vibration power and radiation sound field under the action of the harmonic force units at different frequencies; finally, acquiring practical vibration power by the power flow method and vibration power by the finite-element-boundary element model, scaling field-point sound pressure under the action of unit force to obtain the bridge noise, the steel-rail noise and the total noise thereof.
Owner:TONGJI UNIV

Designing method for gradient coil of self-shielding superconductive nuclear magnetic resonance imaging system

The invention discloses a designing method for a gradient coil of a self-shielding superconductive nuclear magnetic resonance imaging system.The designing method comprises the steps that firstly, three-dimensional continuous triangular mesh dividing is performed on a main coil framework region and a shielding coil framework region, and an axial magnetic induction intensity coefficient matrix generated by mesh nodes in the main coil framework region and the shielding coil framework region on a target field point is calculated according to a boundary elements method; secondly, an optimization calculation model is built through a regularization method, wherein the optimization calculation model comprises two parts, the first part is deviation between the axial magnetic induction intensity generated by the mesh nodes in the main coil framework region and the shielding coil framework region on a target field point and the expected target magnetic induction intensity, the second part is the quadratic sum of the flow function curvature of the mesh nodes, and flow function values of the mesh nodes in the main coil framework region and the shielding coil framework region are obtained through solution; lastly, actual winding distribution of the gradient coil is obtained through a flow function method.
Owner:INST OF ELECTRICAL ENG CHINESE ACAD OF SCI

Inverse thermal acoustic imaging part inspection

A method of identifying a flaw in a part is provided that includes vibrating a part to induce heat. The heat originates in any flaws in the part. A thermal image is obtained using, for example, an infrared camera. A mathematical representation of the thermophysics, such as the heat conduction or thermal energy equations using the boundary element method or finite element method is used to identify a source and an intensity of the heat identified with the thermal image. Using the source and intensity of the heat, flaw characteristics for the part can be determined. The method is employed using an inspection system that includes a vibration device for vibrating the part. An imaging device, such as an infrared camera, measures temperature on the surface of the part. An assumption is made or additional measurements are taken to obtain values for surface flux or surface heat transfer coefficients. A processor communicates with the imaging device for receiving the surface temperature. The processor includes computer memory having part characteristics and mathematical equations. The processor uses the measured surface temperature, assumed or measured heat flux or heat transfer coefficients, part characteristics and mathematical equations to determine the flaw characteristics in the part.
Owner:RTX CORP

Object based boundary refinement method

ActiveUS7466872B2Image enhancementImage analysisObject structureBoundary refinement
An object based boundary refinement method for object segmentation in digital images receives an image and a single initial object region of interest and performs refinement zone definition using the initial object regions of interest to generate refinement zones output. A directional edge enhancement is performed using the input image and the refinement zones to generate directional enhanced region of interest output. A radial detection is performed using the input image the refinement zones and the directional enhanced region of interest to generate radial detection mask output. In addition, a final shaping is performed using the radial detection mask having single object region output.A directional edge enhancement method determining pixel specific edge contrast enhancement direction according to the object structure direction near the pixel consists receives an image and refinement zones and performs 1D horizontal distance transform and 1D vertical distance transform using the refinement zones to generate horizontal distance map and vertical distance map outputs. A neighboring direction determination is performed using the horizontal distance map and the vertical distance map to generate neighboring image output. In addition, a directional edge contrast calculation using the neighboring image and input image having directional enhanced region of interest output.
Owner:LEICA MICROSYSTEMS CMS GMBH

Method for forecasting cavitation induced noise values of vane pumps

The invention provides a method for forecasting cavitation induced noise values of vane pumps, and aims at calculating inside and outside radiation noises, which undergo cavitation, of vane pumps in low-pressure or large-flow occasions. The method comprises the following steps of: modeling a flow field domain and a pump shell, carrying out mesh generation on the flow field domain and checking mesh quality, setting a pressure inlet and a speed outlet boundary condition according to specific operation parameters of a pump, setting a solver parameters, and calculating non-cavitated constant file; carrying out constant iterative calculation to obtain a cavitation numerical value result file under each cavitation number, and carrying out turbulence model verification and cavitation model verification on models; carrying out inconstant iterative calculating by taking the constant result file which is added with a cavitation model as an initial value of cavitation inconstant calculation, so as to obtain a pulse and mesh information file included under each cavitation number; and calculating a cavitation induced noise of the vane pump by applying a coupled algorithm of a sound analogy theory and a boundary element method in acoustic calculation software. The method is capable of correctly carrying out cavitation induced noise forecasting.
Owner:JIANGSU UNIV

Method of acoustics simulated analysis and optimization for cabin of passenger plane

The invention discloses a method of acoustics simulated analysis and optimization for a cabin of a passenger plane. The method comprises the following steps that the cabin of the passenger plane is used as a prototype, a free meshing method is adopted based on HYPERMESH software, a cabin structure grid model containing seats is established, the cabin structure grid model is led into ANSYS in a *.cdb format, a Block Lanczos method is used for carrying out vibration mode analysis, a mode superposition method is used for carrying out harmonic response analysis, the vibration frequency response features of the cabin structure are obtained, a vibration frequency response feature destination file is led into SYSNOISE as an boundary incentives condition in a *.fre format which is capable of being recognized by the SYSNOISE, a direct boundary element method is used for finally obtaining sound pressure frequency response characteristics in the cabin, the cabin structure parameters are selected as design variables, and a lowest sound pressure order in the cabin is used as a design goal to carry out sound field optimization of civil aircraft cabins. According to the method of the acoustics simulated analysis and optimization for the cabin of the passenger plane, not only is the advantage that a finite element method is prone to obtaining vibration performance used, but also the advantage that the boundary element method obtains acoustic properties fast is brought in to full play, and therefore calculation speed is accelerated.
Owner:NANJING UNIV OF AERONAUTICS & ASTRONAUTICS

A method for calculating a complex structure radiation sound field in a marine acoustic channel

The invention discloses a method for calculating a complex structure radiation sound field in a marine acoustic channel, and belongs to the technical field of acoustic numerical calculation. The limitation that a traditional boundary element method is only suitable for free field sound field calculation is broken through, and a sound field Green function in an ocean sound channel is established. Ahierarchical matrix compression technology is adopted to divide a radiation impedance matrix into a series of hierarchical matrix blocks with different sizes, and an iteration method is further utilized to solve a matrix equation. Compared with the prior art, the method has the effects and benefits that the acoustic calculation function of the traditional boundary element method is expanded frominfinite uniform media to the bounded space of the ocean channel, and the influence of sea surface, seabed boundary and sound velocity gradient distribution can be considered. And on the other hand, the radiation impedance matrix is subjected to hierarchical compression, the consumption of a computer memory is greatly reduced by utilizing the low-rank characteristic approximate decomposition of the matrix block, the influence of the diversity of a sound field Green function under the complex marine channel condition is avoided, and the algorithm adaptability is good.
Owner:中国船舶重工集团公司第七六〇研究所

Three-dimensional frequency domain numerical method for predicting wave drift load of a multi-floating body structure

ActiveCN109344531AImprove convergence rateAccurately predict hydrodynamic coefficientsGeometric CADDesign optimisation/simulationBoundary element methodVelocity potential
The invention provides a three-dimensional frequency domain numerical method for predicting wave drift load of a multi-floating body structure. The method comprises the following steps: Reading the mesh file, using the mesh information to carry on the ship hydrostatic calculation; calculating The influence coefficient matrix of simple Green's function Calculating The influence coefficient matrix of complex frequency domain Green's function. Taking The Taylor expansion boundary element method solve the unit radiation velocity potential, diffraction velocity potential and their spatial derivatives. solving Hydrodynamic Coefficients of Multiple Floating Body Structures; solving multi-floating body motion equation; solving The wave forces and wave drift loads of each unit for the whole multi-floating structure. According to the response RAO of floating body motion, anyalzing and calulating the floating body motion spectrum in irregular waves. The method of the invention can accurately predict hydrodynamic coefficients, motion RAO, wave forces, wave drift loads in a six-degree-of-freedom direction of each unit of a multi-floating body structure and results of floating body motion spectrum analysis.
Owner:HARBIN ENG UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products