Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5607 results about "Data harvesting" patented technology

Multimedia surveillance and monitoring system including network configuration

A comprehensive, wireless multimedia surveillance and monitoring system provides a combination of megapixel digital camera capability with full motion video surveillance with a network, including network components and appliances such as wiring, workstations, and servers with the option of geographical distribution with various wide area carriers. The full service, multi-media surveillance system is capable of a wide range of monitoring techniques utilizing digital network architecture and is adapted for transmitting event data, video and / or image monitoring information, audio signals and other sensor and detector data over significant distances using digital data transmission over a LAN, wireless LAN, Intranet or Internet for automatic assessment and response including dispatch of response personnel. Both wired and wireless appliance and sensor systems may be employed. GPS dispatching is used to locate and alert personnel as well as to indicate the location of an event. Automatic mapping and dispatch permits rapid response. The wireless LAN connectivity permits local distribution of audio, video and image data over a relatively high bandwidth without requirement of a license and without relying on a common carrier and the fees associated therewith. The surveillance system may be interfaced with a WAN (wide area Network) or the Internet for providing a worldwide, low cost surveillance system with virtually unlimited geographic application. Centralized monitoring stations have access to all of the surveillance data from various remote locations via the Internet or the WAN. A server provides a centralized location for data collection, alarm detection and processing, access control, dispatch processing, logging functions and other specialized functions. The server may be inserted virtually anywhere in the Intranet / Internet network. The topology of the network will be established by the geographic situation of the installation. Appropriate firewalls may be set up as desired. The server based system permits a security provider to have access to the appliance and sensor and surveillance data or to configure or reconfigure the system for any station on the network.
Owner:PR NEWSWIRE

System and method for monitoring and controlling residential devices

InactiveUS6891838B1Closed feedback loopIntegrated inexpensivelyElectric signal transmission systemsNetwork topologiesControl signalActuator
The present invention is generally directed to a system and method for monitoring and controlling a host of residential automation systems. The system is implemented by using a plurality of wireless communication devices configured to relay both data and command encoded signals through the wireless network of communication devices interposed between integrated sensors / actuators and a gateway device. In accordance with a preferred embodiment, the gateway translates the data encoded signals and embeds the information in a data packet using terminal control protocol / Internet protocol to communicate the data to a computing device on a wide area network. The computing device may comprise data collection and or control algorithms as desired. The computing device may forward command signals to the gateway device. In response thereto, the gateway may convert the command signals into appropriate command encoded signals for wireless transmission to a designated actuator integrated in a residential system. The present invention can also be viewed as providing a method for monitoring and controlling residential systems. In its broadest terms, the method can be described as: sensing a parameter; generating a wireless signal; traversing a wireless network to a gateway interconnected with a wide area network; communicating the parameter to a computing device on the network; generating a control signal; communicating the control signal to the gateway; converting the control signal; and broadcasting the control signal such that an appropriate actuator is energized.
Owner:SIPCO

Method and apparatus for performing a function in a plant using process performance monitoring with process equipment monitoring and control

A process control system uses a data collection and distribution system and an asset utilization suite to collect data or information pertaining to the assets of a process plant from various sources or functional areas of the plant including, for example, the process control functional areas, the maintenance functional areas and the process performance monitoring functional areas. This data and information is manipulated in a coordinated manner by the data collection and distribution system and is redistributed to other applications where this it is used to perform overall better or more optimal control, maintenance and business activities. Information or data may be collected by maintenance functions pertaining to the health, variability, performance or utilization of a device, loop, unit, area, etc. and this information may then be sent to and displayed to a process operator or maintenance person to inform that person of a current or future problem. A user interface is provided that enables users to access and manipulate the expert engine to optimize plant operation or cause optimization of plant operation, to get information about the operation of the plant, etc. Furthermore, applications, such as work order generation applications may automatically generate work orders, parts or supplies orders, etc. based on events occurring within the plant.
Owner:FISHER-ROSEMOUNT SYST INC

System and method for acquiring data

A system for acquiring, and displaying, data such as physiological data, from a plurality of data connection devices, each of which monitor one or more different parameters and output data at different sampling frequencies based on their own system clocks. The system receives the data signals at different sampling frequencies and associates each sample of each signal with a time stamp derived from a single master clock. Low rate and high rate data are treated differently. Low rate data is associated with the current value of the master clock, where as high rate data is time stamped by giving the first sample a time stamp equal to the current value of the current master clock, subsequent samples being given an estimated time stamp based on the expected interval between samples derived from the sampling frequency of the data collection device, and the timescale given to the first example. The estimated time stamp may be periodically corrected, and the estimation calculation can be improved by correcting the value used for the interval between samples. The different signals can be displayed together on a display aligned with respect to a time axis. The system can display, the data in two different timescales, one showing a few seconds of data and one showing a few hours of data. The data traces are scrolled across the time axis, new data being added to one end of the trace.
Owner:ISIS INNOVATION LTD

Remote anomaly diagnosis and reconfiguration of an automatic data collection device platform over a telecommunications network

The invention provides a system and method for remotely diagnosing and repairing a plurality of Automatic Data Collection (“ADC”) device platforms. A remote service technician utilizes a computing system having browsing software that communicates with a network of ADC platform devices. Diagnostic queries for particular ADC devices may be retrieved by the browsing software from a diagnostic server that sends Hypertext Mark-Up Language (“HTML”) documents, Dynamic Hypertext Mark-Up Language (“DHTML”) documents, and / or Extensible Mark-Up Language (“XML”) documents containing appropriate diagnostic applets. The remote technician sends diagnostic queries to a Simple Network Management Protocol (“SNMP”) master agent at the ADC device platform, and a translator translates the diagnostic queries sent to the ADC device platform into a format suitable for reception by its ADC devices in order to effect anomaly diagnosis and functionality restoration. Another translator translates data received from the ADC device into the SNMP format for transmission to the remote service technician in order for the remote service technician to perform diagnostic analysis. The SNMP master agent communicates with the remote computing system using the Transmission Control Protocol (“TCP”), the User Datagram Protocol / Internet Protocol (“UDP / IP”), and / or the User Datagram Plus Protocol (“UDP+”). The ADC platform device may also utilize a wireless communication system for communicating with the remote service technician.
Owner:INTERMEC IP CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products