Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

141results about How to "Higher quality than capacity" patented technology

High-capacity metal lithium powder composite cathode and preparation method thereof, and multi-layer composite electrode

The invention discloses a high-capacity metal lithium powder composite cathode and a preparation method thereof and a multi-layer composite electrode. The high-capacity metal lithium powder composite cathode comprises the following components in part by weight: 1 to 80 parts of metal lithium powder, 10 to 90 parts of cathode powder, 1 to 10 parts of conductive agent, 1 to 4.5 parts of adhesive and 0 to 0.5 part of surfactant. By compounding the metal lithium powder with materials such as graphite, soft carbon, hard carbon, tin and oxides thereof, silicon and oxides thereof and the like, mass ratio capacity and volume ratio capacity of a cathode material are improved, using amount of active substances is reduced, and the battery specific capacity is improved; the specific capacity of the cathode can be adjusted by adjusting the rate of metal lithium to the graphite; short circuit in a battery caused by piercing of a diaphragm through metal dendritic crystal growth can be effectively prevented through the separation of an insulating protective layer, so that the safety performance of the battery is improved; and the metal lithium powder is counteracted with irreversible capacity loss of the cathode, and primary Kulun efficiencies of the graphite, the hard carbon, the soft carbon, the tin, the silicon and other cathode materials are improved.
Owner:EC POWER LLC

Preparation method for flexible graphene-modified knittable carbon nanofiber

A preparation method for a flexible graphene-modified knittable carbon nanofiber belongs to the technical field of chemical industry. The preparation method comprises the following steps: at first, graphene oxide is taken to be placed in a container filled with DMF (Dimethyl Formamide) to obtain a graphene oxide saturated solution with the brown-yellow upper layer, then, polyacrylonitrile macromolecules are dissolved in the DMF to obtain a transparent macromolecular solution, the graphene oxide saturated solution and the macromolecular solution are mixed to obtain a precursor solution, a grapheme-modified polyacrylonitrile fiber is obtained through the electrostatic spinning technology or the melt spinning technology, the drying and stabilizing are performed, and at last, the carbon nanofiber is prepared from the dried polyacrylonitrile fiber in the inert gas environment or the vacuum condition. The carbon nanofiber prepared by the method can be applicable to lithium ion batteries or electrochemical capacitors, and besides, is also applicable to the fields of the war industry and the aerospace.
Owner:NORTHEAST NORMAL UNIVERSITY

Preparation method of manganese-based compound positive pole material for secondary lithium ion battery

The invention provides a preparation method of a manganese-based compound positive pole material for a secondary lithium ion battery. The general constitution formula of the positive pole material is Li (LixMn2-x-yMy) O4 / Az, wherein x is more than or equal to 0 and less than or equal to 0.5, y is more than or equal to 0 and less than or equal to 2, and z is more than or equal to 0 and less than or equal to 0.5; and M is a doped modified element, and A is an oxide of a coating element or a phthalocyanines large-ring transition metal complex. When the positive pole material is prepared, a lithium source and an M source are added into mixing equipment containing a medium and a dispersing agent to be mixed and dried; then the mixture and a manganese source are added into the mixing equipment containing the medium and the dispersing agent to be mixed and dried; then the new mixture is roasted and then is cooled to a room temperature; and the new mixture and an A source are added into the mixing equipment containing the medium and the dispersing agent to be mixed and dried, are roasted again, are cooled to the room temperature and are mixed and crushed to obtain the manganese-based compound positive pole material. The preparation method disclosed by the invention has the advantages of simple process, low raw material cost and processing cost, simple process route, short period and low energy consumption. The produced manganese-based compound positive pole material has the advantages of high energy density, mass specific capacity, power performance, high-temperature circulating performance and high-temperature storage performance; and the capacity efficiency of the material is high at -40 DEG C.
Owner:济宁市无界科技有限公司

High-performance lithium ion battery silicon-carbon cathode material and preparation method thereof

InactiveCN103326023AImprove cycle lifeHigh mass specific capacityCell electrodesGramCarbon nanotube
The invention relates to a lithium ion battery high specific capacity silicon-carbon composite cathode material. The high-performance lithium ion battery silicon-carbon cathode material comprises a Si-SiOx / C / DC composite system with a specific surface area of 1-30 square meters per gram, wherein the composite system comprises C matrix, Si-SiOx compound stuck in the C matrix, carbon nanotube distributed in C matrix and Si-SiOx-C, and an organic pyrolytic carbon coating on the outermost layer. The high-performance lithium ion battery cathode material has high quality specific capacity, good cycle stability and long service life, and can be used as high energy density cell cathode material for portable mobile terminals and digital products.
Owner:ZHEJIANG WELLY ENERGY CORP

Sodium-ion intercalated Ti3C2 MXene material and preparation method thereof

The invention relates to a sodium-ion intercalated Ti3C2 MXene material and a preparation method thereof. The technical scheme includes that the preparation method includes the steps: matching materials titanium aluminum carbon powder, hydrochloric acid solution and lithium fluoride powder according to the weight ratio of (1.0-2.0):(2.0-4.0):1, performing water bath stirring in a polyethylene plastic container, and ultrasonically and centrifugally treating mixture to obtain solid I; alternately washing the solid I by the aid of deionized water and ethyl alcohol until liquid supernatant is neutral, and filtering mixture to prepare the Ti3C2 MXene material; placing the Ti3C2 MXene material into NaOH solution to perform water bath stirring, ultrasonically and centrifugally treating mixture, alternately washing the mixture by the aid of deionized water and ethyl alcohol until liquid supernatant is neutral, and performing vacuum drying to prepare the sodium-ion intercalated Ti3C2 MXene material. The preparation method has the advantages of mild preparation condition and easiness in control, and the prepared sodium-ion intercalated Ti3C2 MXene material is wide interlayer spacing and large in specific surface area and has higher mass specific capacity when being applied to lithium and sodium ion batteries.
Owner:WUHAN UNIV OF SCI & TECH

Organic cathode material for sodium ion battery

The invention discloses an organic cathode material for a sodium ion battery capable of being repeatedly charged and discharged, and belongs to the field of batteries. According to the organic cathode material for the sodium ion battery disclosed by the invention, an active substance of the organic cathode material is para-phthalate or a mixture of different para-phthalates; the chemical composition of the para-phthalate is C8H4O4.Rx, wherein R is Li, K, Rb, Cs, Mg, Ca, Sr, Ba, Ni, Cu, Sn, Fe, Zn, Cr, Al or Mn, and x is equal to 2 / 7, 1 / 3, 2 / 5, 1 / 2, 2 / 3, 1 or 2. The organic cathode material disclosed by the invention has low reaction potential, high quality specific capacity and excellent electrochemical cycle stability, and is simple in synthetic method and good in repeatability; the production cost is reduced, the requirement of sustainable development is met, and the organic cathode material has a wide application prospect in the field of sodium ion batteries.
Owner:UNIV OF ELECTRONIC SCI & TECH OF CHINA

Pseudocapacitor anode based on three-dimensional multi-level nanostructure of cobalt-nickel sulfide core shell and preparation method of pseudocapacitor anode

The invention discloses a pseudocapacitor anode based on a three-dimensional multi-level nanostructure of cobalt-nickel sulfide core shell and a preparation method of the pseudocapacitor anode. The anode comprises a foamed nickel substrate 1, cobalt-nickel sulfide nanosheets 2 positioned on the foamed nickel substrate 1 and distributed in an array manner and cobalt-nickel sulfide blades 3 connected to the two sides of the cobalt-nickel sulfide nanosheets 2 and distributed in a growing array manner, wherein the cobalt-nickel sulfide nanosheets 2 are perpendicular to the foamed nickel substrate 1; the cobalt-nickel sulfide blades 3 and the cobalt-nickel sulfide nanosheets 2 are in the opposite directions along the foamed nickel substrate 1 by 0 to 90 degrees. According to the disclosed anode structure, the cobalt-nickel sulfide nanosheet array is directly grown on the highly conductive foam nickel substrate, so that the anode has the very high electron mobility and is beneficial to realization of rapid charge and discharge; meanwhile, the cobalt-nickel sulfide blades are continuously grown on the nanosheet array in situ, so that the available active surface of an electrode can be expanded, the energy density of the electrode can be increased, and the action speed of an active material and an electrolyte can be increased.
Owner:重庆中科超容科技有限公司

Three-dimensional silicon-carbon composite negative electrode material and preparation method and application thereof in lithium ion battery

The invention provides a three-dimensional silicon-carbon composite negative electrode material as well as a preparation method and application thereof in a lithium ion battery. The preparation methodcomprises the following steps: step 1, freeze-drying bacterial cellulose hydrogel to obtain aerogel, then soaking the aerogel in a nano-silicon source dispersion liquid, and drying after sufficient absorption to obtain bacterial cellulose/nano-silicon composite aerogel; and 2, carrying out high-temperature cracking on the bacterial cellulose/nano-silicon composite aerogel in an inert atmosphere at a high-temperature cracking temperature of 700-1200 DEG C, and naturally cooling to obtain the three-dimensional silicon-carbon composite negative electrode material; the three-dimensional carbon nanofibers derived from bacterial cellulose after carrying out high-temperature cracking are interlinked, and has good shaping strain and excellent mechanical properties, and the obtained three-dimensional carbon nanofiber has a porous network structure, so that the three-dimensional carbon nanofiber can fully accommodate volume expansion of a silicon-based material in charging and discharging processes, and the cycle and rate performance of the material is further improved.
Owner:SHAANXI COAL & CHEM TECH INST

Method for synthesizing lithium iron phosphate material by adopting electrostatic spinning

InactiveCN102392311AImprove the performance of high rate charge and dischargeHigher quality than capacityCell electrodesFilament/thread formingHigh ratePolyvinyl alcohol
The invention belongs to a method for synthesizing a lithium iron phosphate material by adopting electrostatic spinning. The selected compounds comprise an iron source compound which is selected from one or a mixture of two of FeC2O4, Fe2O3 and FePO4, a lithium source compound which is selected from one or a mixture of two of LiH2PO4, Li2CO3, Li2HPO4 and LiOH, a phosphate radical containing compound which is selected from one or a mixture of two of LiH2PO4, (NH4)2HPO4, NH4H2PO4 and H3PO4, a polymer which is selected from one or two of polyvinyl alcohol, polyacrylonitrile and polyvinylpyrrolidone, and a solvent used by polymer solution which is selected from one or a mixture of more than two of water, ethanol, glycol, acetic acid and isopropanol. The lithium iron phosphate in a nano structure is prepared by preparing spinning solution, preparing a lithium iron phosphate precursor and drying and calcining the lithium iron phosphate precursor. The method has the following beneficial effects: the high-rate charge/discharge performance of the lithium iron phosphate and the specific capacity of charge/discharge under low temperature are improved; and the new method is provided for synthesizing lithium iron phosphate.
Owner:长春劲能科技集团有限公司

Method for preparing fluorine- and -nitrogen-doped graphene-like laminated material

The invention discloses a method for preparing a fluorine- and-nitrogen-co-doped graphene-like laminated material, which is characterized in that glucosamine hydrochloride and polyvinylidene fluorideare mixed and evenly ball-milled in a salt template of a lithium chloride and potassium chloride mixed material; carbonization is performed under an argon atmosphere; acid washing and water washing are performed; and finally vacuum drying is performed to obtain the fluorine- and nitrogen-doped graphene-like laminated material. The fluorine- and -nitrogen co-doped graphene-like laminated material is obtained by one-step carbonization by means of the salt template method, wherein the graphene-like laminated layer is thin, fluorine and nitrogen elements are evenly distributed, the dimensional stability is good, and the repeatability is good. The content of thefluorine and nitrogen elements can be adjusted according to the adding amount of the polyvinylidene fluoride. The method is simple, canachieve one-step synthesis, and is moderate in carbonization temperature; the prepared fluorine- and-nitrogen-doped graphene-like laminated material has high mass specific capacity, good cycle stability and good electrical conductivity. The invention has good prospect in the application to supercapacitor energy storage materials.
Owner:DONGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products