Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

507 results about "Ion energy" patented technology

Methods for stable and repeatable ion implantation

A method for plasma ion implantation of a substrate includes providing a plasma ion implantation system having a process chamber, a source for producing a plasma in the process chamber, a platen for holding a substrate in the process chamber, an anode spaced from the platen, and a pulse source for generating implant pulses for accelerating ions from the plasma into the substrate. In one aspect, a parameter of an implant process is varied to at least partially compensate for undesired effects of interaction between ions being implanted and the substrate. For example, dose rate, ion energy, or both may be varied during the implant process. In another aspect, a pretreatment step includes accelerating ions from the plasma to the anode to cause emission of secondary electrons from the anode, and accelerating the secondary electrons from the anode to a substrate for pretreatment of the substrate.
Owner:VARIAN SEMICON EQUIP ASSOC INC

Method of aligning nanowires

A method of aligning nanowires on a substrate is provided. First, a plurality of the nanowires is formed on the substrate, then the plurality of nanowires is exposed to a flux of energetic ions, e.g., argon at an ion energy of 5 KV and an integrated flux density of about 6x1015 ions / cm2. The flux of energetic ions serves to align the nanowires parallel to each other. The flux of energetic ions may also be used to align the nanowires parallel to the substrate surface.
Owner:SAMSUNG ELECTRONICS CO LTD

Tandem time of flight mass spectrometer and method of use

To provide comprehensive (i.e. rapid and sensitive) MS-MS analysis, the inventor employs a time-nested separation, using two time-of-flight (TOF) mass spectrometers. Parent ions are separated in a slow and long TOF1, operating at low ion energy (1 to 100 eV), and fragment ions are mass analyzed in a fast and short TOF2, operating at much higher keV energy. Low energy fragmentation cell between TOF1 and TOF2 is tailored to accelerate fragmentation and dampening steps, mostly by shortening the cell and employing higher gas pressure. Since separation in TOF1 takes milliseconds and mass analysis in TOF2—microseconds, the invention provides comprehensive MS-MS analysis of multiple precursor ions per single ion pulse. Slow separation in TOF1 becomes possible with an introduction of novel TOF1 analyzers. The TOF-TOF could be implemented using a static TOF1, here described on the examples of spiratron, planar and cylindrical multi-pass separators with griddles spatial focusing ion mirrors. Higher performance is expected with the use of novel hybrid TOF1 analyzers, combining radio frequency (RF) and quadratic DC fields. RF field retains low-energy ions within TOF1 analyzer, while quadratic DC field improves resolution by compensate for large relative energy spread.
Owner:LECO CORPORATION

Multi-reflecting time-of-flight mass spectrometer with isochronous curved ion interface

The present invention relates generally to a multi-reflecting time-of-flight mass spectrometer (MR TOF MS). To improve mass resolving power of a planar MR TOF MS, a spatially isochronous and curved interface may be used for ion transfer in and out of the MR TOF analyzer. One embodiment comprises a planar grid-free MR TOF MS with periodic lenses in the field-free space, a linear ion trap for converting ion flow into pulses and a C-shaped isochronous interface made of electrostatic sectors. The interface allows transferring ions around the edges and fringing fields of the ion mirrors without introducing significant time spread. The interface may also provide energy filtering of ion packets. The non-correlated turn-around time of ion trap converter may be reduced by using a delayed ion extraction from the ion trap and excessive ion energy is filtered in the curved interface.
Owner:LECO CORPORATION

Method and apparatus for improved processing with a gas-cluster ion beam

Apparatus and methods for improving processing of workpieces with gas-cluster ion beams and modifying the gas-cluster ion energy distribution in the GCIB. In a reduced-pressure environment, generating an energetic gas-cluster ion beam and subjecting the beam to increased pressure region.
Owner:TEL EPION

Tandem time of flight mass spectrometer and method of use

To provide comprehensive MS—MS analysis, a time-nested separation is employed using two time-of-flight (TOF) mass spectrometers. Parent ions are separated in a slow and long TOF1, operating at low ion energy (1 to 100eV), and fragment ions are mass analyzed in a fast and short TOF2, operating at much higher keV energy. A low energy fragmentation cell between TOF1 and TOF2 is tailored to accelerate fragmentation and dampening steps, mostly by shortening the cell and employing higher gas pressure. Slow separation in TOF1 becomes possible with an introduction of novel TOF1 analyzers. Higher performance is expected with the use of novel hybrid TOF1 analyzers, combining radio frequency (RF) and quadratic DC fields. An RF field retains low-energy ions within a TOF1 analyzer, while a quadratic DC field improves resolution by compensating for a large relative energy spread.
Owner:LECO CORPORATION

Systems and methods for calibrating a switched mode ion energy distribution system

Systems, methods and apparatus for regulating ion energies and ion energy distributions along with calibrating a bias source and a plasma processing chamber are disclosed. An exemplary method includes applying a periodic voltage function to a load emulator, which emulates electrical characteristics of a plasma load and associated electronics such as an e-chuck. The load emulator can be measured for various electrical parameters and compared to expected parameters generated by the bias source. Differences between measured and expected values can be used to identify and correct faults and abnormalities in the bias supply, the chamber, or a power source used to ignite and sustain the plasma. Once the bias supply is calibrated, the chamber can be calibrated by measuring and calculating an effective capacitance comprising a series and parallel capacitance of the substrate support and optionally the substrate.
Owner:AES GLOBAL HLDG PTE LTD

Wafer Chucking System for Advanced Plasma Ion Energy Processing Systems

Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a desired distribution of energies of ions at the surface of the substrate so as to effectuate the desired distribution of ion energies on a time-averaged basis.
Owner:AES GLOBAL HLDG PTE LTD

Multi-reflecting time-of-flight mass spectrometer with isochronous curved ion interface

The present invention relates generally to a multi-reflecting time-of-flight mass spectrometer (MR TOF MS). To improve mass resolving power of a planar MR TOF MS, a spatially isochronous and curved interface may be used for ion transfer in and out of the MR TOF analyzer. One embodiment comprises a planar grid-free MR TOF MS with periodic lenses in the field-free space, a linear ion trap for converting ion flow into pulses and a C-shaped isochronous interface made of electrostatic sectors. The interface allows transferring ions around the edges and fringing fields of the ion mirrors without introducing significant time spread. The interface may also provide energy filtering of ion packets. The non-correlated turn-around time of ion trap converter may be reduced by using a delayed ion extraction from the ion trap and excessive ion energy is filtered in the curved interface.
Owner:LECO CORPORATION

Process using combined capacitively and inductively coupled plasma sources for controlling plasma ion radial distribution

A method of processing a workpiece in the chamber of a plasma reactor includes introducing a process gas into the chamber, capacitively coupling VHF plasma source power into a process region of the chamber that overlies the wafer while inductively coupling RF plasma source power into the process region. A particular plasma ion density level is established by maintaining the total amount of plasma source power inductively and capacitively coupled into the process region at a level that provides the desired plasma ion density. The plasma ion density radial distribution in the process region is controlled by adjusting the ratio between the amounts of the (VHF) capacitively coupled power and the inductively coupled power while continuing to maintain the level of total plasma source power. The method can also include applying independently adjustable LF bias power and HF bias power to the workpiece and adjusting the average value and population distribution of ion energy at the surface of the workpiece by adjusting the proportion between the LF and HF bias powers. The VHF capacitively coupled power may be applied from the ceiling or from the wafer support.
Owner:APPLIED MATERIALS INC

Method of controlling the switched mode ion energy distribution system

Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis.
Owner:ADVANCED ENERGY IND INC

Method and apparatus for controlling ion energy distribution

Systems, methods and apparatus for regulating ion energies in a plasma chamber are disclosed. An exemplary system includes an ion-energy control portion, and the ion-energy control portion provides at least one ion-energy control signal responsive to at least one ion-energy setting that is indicative of a desired distribution of energies of ions bombarding a surface of a substrate. A controller is coupled to the switch-mode power supply, and the controller provides at least two drive-control signals. In addition, a switch-mode power supply is coupled to the substrate support, the ion-energy control portion and the controller. The switch-mode power supply includes switching components configured to apply power to the substrate responsive to the drive signals and the ion-energy control signal so as to effectuate the desired distribution of the energies of ions bombarding the surface of the substrate.
Owner:AES GLOBAL HLDG PTE LTD

Biomass hard carbon negative electrode material for sodium ion battery, preparing method and sodium ion battery

The invention relates to a biomass hard carbon negative electrode material for a sodium ion battery, a preparing method and the sodium ion battery and belongs to the technical field of sodium ion energy storage equipment. The biomass hard carbon negative electrode material is prepared through the method including the following steps that firstly, a biomass raw material is smashed, and precursor particles are obtained; secondly, in a protection atmosphere, the precursor particles are heated to 400-600 DEG C to be pre-sintered for 1.5-2.5 h, then cooled to the room temperature along with a furnace, then heated to 800-1600 DEG C to be sintered for 2-5 h and cooled, and an intermediate is obtained; thirdly, the intermediate is put into an alkali solution to be soaked, taken out, then put into an acid solution to be soaked, then washed with water to be neutral and dried, and a purified product is obtained; fourthly, the purified product is subjected to microwave vacuum activation for 3-15 s at the power of 1000-2000 W, and then the biomass hard carbon negative electrode material is obtained. The first-time charging and discharging efficiency of the obtained biomass hard carbon negative electrode material reaches up to 90% or above, the circulation stability is good, the reversible specific capacity is 300 mAh / g or above, and the biomass hard carbon negative electrode material has a good electrochemical property.
Owner:浙江瓦司特钠科技有限公司

Systems and methods for calibrating a switched mode ion energy distribution system

Systems, methods and apparatus for regulating ion energies and ion energy distributions along with calibrating a bias source and a plasma processing chamber are disclosed. An exemplary method includes applying a periodic voltage function to a load emulator, which emulates electrical characteristics of a plasma load and associated electronics such as an e-chuck. The load emulator can be measured for various electrical parameters and compared to expected parameters generated by the bias source. Differences between measured and expected values can be used to identify and correct faults and abnormalities in the bias supply, the chamber, or a power source used to ignite and sustain the plasma. Once the bias supply is calibrated, the chamber can be calibrated by measuring and calculating an effective capacitance comprising a series and parallel capacitance of the substrate support and optionally the substrate.
Owner:AES GLOBAL HLDG PTE LTD

Plasma processing system control

A method of approximating an ion energy distribution function (IEDF) at a substrate surface of a substrate, the substrate being processed in a plasma processing chamber. There is included providing a first voltage value, the first voltage value representing a value of a first voltage that represents a DC potential (VDC) at the substrate surface. There is also included providing a peak low frequency RF voltage value (VLFRF(PEAK)) during plasma processing, the peak low frequency RF voltage (VLFRF(PEAK)) value representing a peak value of a low frequency RF voltage (VLFRF) supplied to the plasma processing chamber. There is further included providing a computing device configured to compute the IEDF from the first voltage value and the peak low frequency RF voltage value (VLFRF(PEAK)) in accordance with f⁡(E)≡(ⅆVLFⅆt)-1,wherein VLF⁡(t)=[(VLFRF⁡(PEAK)-Vdc2)1 / 2-(VLFRF⁡(PEAK)-Vdc8)1 / 2⁢sin⁢⁢ω⁢⁢t]2.
Owner:LAM RES CORP

Wafer chucking system for advanced plasma ion energy processing systems

Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a desired distribution of energies of ions at the surface of the substrate so as to effectuate the desired distribution of ion energies on a time-averaged basis.
Owner:AES GLOBAL HLDG PTE LTD

System, method and apparatus for controlling ion energy distribution

Systems, methods and apparatus for regulating ion energies in a plasma chamber are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a desired distribution of energies of ions at the surface of the substrate so as to effectuate the desired distribution of ion energies on a time-averaged basis.
Owner:AES GLOBAL HLDG PTE LTD

Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system

Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis.
Owner:AES GLOBAL HLDG PTE LTD

System, method and apparatus for controlling ion energy distribution of a projected plasma

Systems, methods and apparatus for regulating ion energies in a plasma chamber are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber via a remotely generated ionizing electromagnetic field that extends into the plasma chamber from a remote projected source, controllably switching power to the substrate so as to apply a periodic voltage function to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a desired distribution of energies of ions at the surface of the substrate so as to effectuate the desired distribution of ion energies on a time-averaged basis.
Owner:AES GLOBAL HLDG PTE LTD

Feedback Control By RF Waveform Tailoring for Ion Energy Distribution

A system for controlling RF power supplies applying power to a load, such as a plasma chamber, includes a master power supply and a slave power supply. The master power supply provides a control signal, such as a frequency and phase signal, to the slave power supply. The slave power supply receives the frequency and phase signal and also receives signals characteristic of the spectral emissions detected from the load. The slave RF power supply varies the phase and power of its RF output signal applied to the load. Varying the power controls the width of an ion distribution function, and varying the phase controls a peak of the ion distribution. Depending upon the coupling between the RF generators and the load, different spectral emissions are detected, including first harmonics, second harmonics, and, in the case of a dual frequency drive system, intermodulation distortion.
Owner:MKS INSTR INC

Ion irradiation of a target at very high and very low kinetic ion energies

A particle-beam exposure apparatus (1) for irradiating a target (41) by means of a beam (2) of energetic electrically charged particles comprises: an illumination system (101) for generating and forming said particles into a directed beam (21); a pattern definition means (102) located after the illumination system for positioning a pattern of apertures transparent to the particles in the path of the directed beam, thus forming a patterned beam (22) emerging from the pattern definition means through the apertures; and a projection system (103) positioned after the pattern definition means (102) for projecting the patterned beam (22) onto a target (41) positioned after the projection system. The apparatus further comprises an acceleration / deceleration means (32) containing an electric potential gradient which is oriented substantially parallel to the path of the structured beam and constant over at least a cross-section of the beam.
Owner:IMS NANOFABTION

Preparation of lamellae for tem viewing

A method and apparatus for producing thin lamella for TEM observation. The steps of the method are robust and can be used to produce lamella in an automated process. In some embodiments, a protective coating have a sputtering rate matched to the sputtering rate of the work piece is deposited before forming the lamella. In some embodiments, the bottom of the lamella slopes away from the feature of interest, which keeps the lamella stable and reduces movement during thinning. In some embodiments, a fiducial is used to position the beam for the final thinning, instead of using an edge of the lamella. In some embodiments, the tabs are completed after high ion energy final thinning to keep the lamella more stable. In some embodiments, a defocused low ion energy and pattern refresh delay is used for the final cut to reduce deformation of the lamella.
Owner:FEI CO

Wide dynamic range ion energy bias control; fast ion energy switching; ion energy control and a pulsed bias supply; and a virtual front panel

This disclosure describes systems, methods, and apparatus for operating a plasma processing chamber. In particular, a periodic voltage function combined with an ion current compensation can be provided as a bias to a substrate support as a modified periodic voltage function. This in turn effects a DC bias on the surface of the substrate that controls an ion energy of ions incident on a surface of the substrate. A peak-to-peak voltage of the periodic voltage function can control the ion energy, while the ion current compensation can control a width of an ion energy distribution function of the ions. Measuring the modified periodic voltage function can provide a means to calculate an ion current in the plasma and a sheath capacitance of the plasma sheath. The ion energy distribution function can be tailored and multiple ion energy peaks can be generated, both via control of the modified periodic voltage function.
Owner:AES GLOBAL HLDG PTE LTD

Method of controlling the switched mode ion energy distribution system

Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis.
Owner:ADVANCED ENERGY IND INC

Systems and methods for monitoring faults, anomalies, and other characteristics of a switched mode ion energy distribution system

Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis.
Owner:AES GLOBAL HLDG PTE LTD

Method of controlling the switched mode ion energy distribution system

Systems, methods and apparatus for regulating ion energies in a plasma chamber and chucking a substrate to a substrate support are disclosed. An exemplary method includes placing a substrate in a plasma chamber, forming a plasma in the plasma chamber, controllably switching power to the substrate so as to apply a periodic voltage function (or a modified periodic voltage function) to the substrate, and modulating, over multiple cycles of the periodic voltage function, the periodic voltage function responsive to a defined distribution of energies of ions at the surface of the substrate so as to effectuate the defined distribution of ion energies on a time-averaged basis.
Owner:AES GLOBAL HLDG PTE LTD

Method and apparatus for improved processing with a gas-cluster ion beam

Apparatus and methods for improving processing of workpieces with gas-cluster ion beams and modifying the gas-cluster ion energy distribution in the GCIB. In a reduced-pressure environment, generating an energetic gas-cluster ion beam and subjecting the beam to increased pressure region.
Owner:TEL EPION

Tandem time of flight mass spectrometer and method of use

To provide comprehensive (i.e. rapid and sensitive) MS-MS analysis, the inventor employs a time-nested separation, using two time-of-flight (TOF) mass spectrometers. Parent ions are separated in a slow and long TOF1, operating at low ion energy (1 to l00eV), and fragment ions are mass analyzed in a fast and short TOF2, operating at much higher keV energy. Low energy fragmentation cell between TOF1 and TOF2 is tailored to accelerate fragmentation and dampening steps, mostly by shortening the cell and employing higher gas pressure. Since separation in TOF1 takes milliseconds and mass analysis in TOF2- microseconds, the invention provides comprehensive MS-MS analysis of multiple precursor ions per single ion pulse. Slow separation in TOF1 becomes possible with an introduction of novel TOF1 analyzers. The TOF-TOF could be implemented using a static TOF1, here described on the examples of spiratron, planar and cylindrical multi-pass separators with griddles spatial focusing ion mirrors. Higher performance is expected with the use of novel hybrid TOF 1 analyzers, combining radio frequency (RF) and quadratic DC fields. RF field retains low-energy ions within TOF 1 analyzer, while quadratic DC field improves resolution by compensate for large relative energy spread.
Owner:力可公司
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products