Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1277 results about "Copper substrate" patented technology

Copper oxide as a "self-cleaning" substrate for graphene growth. Abstract. Commonly used techniques for cleaning copper substrates before graphene growth via chemical vapor deposition (CVD), such as rinsing with acetone, nitric, and acetic acid, and high temperature hydrogen annealing still leave residual adventitious carbon on the copper surface.

Solar selective coating having higher thermal stability useful for harnessing solar energy and a process for the preparation thereof

The present invention provides an improved solar selective multilayer coating having higher thermal stability and a process for the preparation thereof. Solar selective coatings having higher thermal stability are useful in solar steam generation, solar steam turbines to produce electricity and also on automobile engine components. In the present invention, a tandem stack of three layers of TiAlN, TiAlON and Si3N4 is deposited on metal and non-metal substrates at room temperature using a planar reactive direct current magnetron sputtering process. The first two layers function as the absorber and the third antireflection layer further enhances the coating's absorptance. The solar selective coatings were annealed in air and vacuum to test the thermal stability at different temperatures and durations. The coatings of the present invention deposited on copper substrates are stable in air up to a temperature of 625° C. for a duration of 2 hours and exhibit higher solar selectivity in the order of 9-10 and these coating also show no change in the absorptance and the emittance values even after vacuum annealing at 600° C. for 3 hours. Coatings deposited on copper substrates showed no significant degradation in the optical properties even after continuous heating in air at 525° C. for 50 hours. The solar selective coatings of the present invention exhibit high hardness, high oxidation resistance, chemical inertness and stable microstructure.
Owner:COUNCIL OF SCI & IND RES

High-conductivity graphene/copper-based layered composite material and preparation method thereof

InactiveCN106584976AImprove utilization efficiencyTo overcome the deficiency of reducing resistanceLaminationLamination apparatusSingle crystalCvd graphene
The invention discloses a high-conductivity graphene/copper-based layered composite material and a preparation method thereof. The composite material is characterized in that the composite material is of a layered structure formed by alternate combination of chemical vapor deposition (CVD) graphene and a copper substrate, the copper substrate is in a single-crystal state in the thickness direction in layers, and the (111) crystal face high-orientation effect is achieved. The method includes the following steps that (1) graphene is grown on the upper surface and the lower surface of the platy copper substrate through a CVD technology and the copper substrate is induced to achieve preferred orientation along a (111) crystal face, and the sandwich-shaped graphene-cladding copper substrate is obtained through preparation; and (2) multiple pieces of graphene-cladding copper substrates are subjected to hot pressed sintering densification to form the high-conductivity graphene/copper-based layered composite material. The layered composite material prepared by the method is high in conductivity, higher than pure silver in conduction level and easy to produce and can be used as various conduction materials.
Owner:SHANGHAI JIAO TONG UNIV

Equipment and method for producing nichrome composite plate with vacuum arc ion plating

The invention relates to a device for manufacturing a nickel-chromium composite plate by using vacuum arc ion plating to replace electroplating and a method thereof, and is characterized in that the device of the vacuum arc ion plating and the method are utilized to replace water electroplating to sequentially prepare the nickel-chromium composite plate composed of a pure nickel film, a nickel-chromium gradient transition film and a pure chromium film on a copper substrate; the device for manufacturing the nickel-chromium composite plate by using the vacuum arc ion plating is of a vertical cylindrical shape or a regular polygon; arc target sources are evenly distributed around a vacuum chamber wall; a controllable mechanical baffle plate is arranged in front of each target source; a planetary type work rest with rotation and revolution is arranged in the middle part of a vacuum chamber; the technical process of a filming operation comprises three stages that are preliminary treatment, the filming operation and post treatment. The device and the method simplify the process flows and the operation links, increase the work efficiency, fully replace the traditional electroplating technology to coat a wearproof anticorrosion decoration coating on a coppery water heating component, and thoroughly eliminate the environmental pollution problems in the electroplating.
Owner:辽阳市弓长岭区光辉铁矿石加工厂

Method for synthesizing graphene film material

The invention discloses a method for synthesizing a graphene film material, comprising the following steps: a grapheme film is grown on a copper substrate under mixed atmosphere of hydrogen and methane by using a chemical vapor deposition method; then the copper substrate grown with the grapheme film is placed flatly on a silicon substrate with the oxidized surface, the obtained silicon substrateis placed into a ferric nitrate solution, the copper substrate is dissolved, and at the moment, the graphene film is deposited on the silicon substrate; then, the solution is diluted, then the silicon substrate deposited with the grapheme is taken out of the solution, and is dried in a vacuum drying oven; and after ultrasonic cleaning is carried out on the silicon substrate deposited with the graphene, and the obtained silicon substrate is placed in an annealing furnace communicated with argon for protection to anneal, thus a high-quality grapheme sample is prepared. By utilizing the method for synthesizing the graphene film material, the original complex steps needed for preparing the graphene film are simplified, a toxic agent needed by a chemical method is avoided, and the production efficiency of the graphene film is improved, thus by measurement of a Raman spectrometer, the prepared graphene film is proved to have good performances and excellent reliability.
Owner:ZHEJIANG UNIV

Maskless femtosecond laser manufacturing method for super-hydrophobic and anti-reflective surface

The invention relates to a maskless femtosecond laser manufacturing method for a super-hydrophobic and anti-reflective surface and belongs to the field of preparation of super-hydrophobic and anti-reflective materials. The maskless femtosecond laser manufacturing method for the super-hydrophobic and anti-reflective surface comprises the following steps that (1) a copper substrate is plated with a film of a nanometer thickness through electron beam evaporation or a magnetron sputtering coating method; (2) through a femtosecond laser direct writing method, patterning is conducted on the copper substrate plated with the film of the nanometer thickness, and the shape of patterning can be controlled through a program; (3) a heating device is used for conducting thermal oxidation treatment on the substrate obtained after femtosecond laser patterning, and then a micro-nanometer composite structure is prepared. Compared with the prior art, the maskless femtosecond laser manufacturing method for the super-hydrophobic and anti-reflective surface has the advantages that the manufacturing process does not need a vacuum device or an optical mask, and the manufactured substrate is controllable in shape and has the super-hydrophobic performance, the self-cleaning performance, the anti-reflective performance and other performances.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY

Method for nondestructively transferring graphene from metal surface to surface of target substrate

The invention discloses a method for nondestructively transferring graphene from a metal surface to the surface of a target substrate. The method comprises the steps of enabling graphene to grow on the surface of metal copper; coating the surface of graphene with a PMMA film, floating a copper substrate in an etching agent solution to corrode and remove the copper to obtain a PMMA/graphene composite film; enabling a PET film with static electricity in a friction manner to approach the PMMA/graphene composite film which is floated on the liquid surface, and adsorbing the graphene/PMMA composite film on the surface of the PET film by utilizing the electrostatic effect, contacting the graphene/PMMA composite film with the deionized water, meanwhile, releasing static electricity on the surface of the PET film, separating the PMMA/graphene composite film from the PET film, and floating the PMMA/graphene composite film on the water surface; repeating the steps, washing graphene, and completely removing the copper etching agent attached to the surface of the graphene; and finally transferring the PMMA/graphene composite film to the surface of the target substrate, and dissolving and removing the PMMA on the surface. By utilizing the method, not only can the location transfer of the large-sized graphene be realized, but also the damage rate of the graphene can be greatly reduced.
Owner:INST OF MICROELECTRONICS CHINESE ACAD OF SCI

Laser fusion welding method of abrasion-proof heat-proof composite coating on surface of tuyeres of blast furnace port sleeve

The invention relates to a wear-resistant and heat-resistant complex coating laser fusion approach on the tuyere surface of a blast furnace. The high power laser quickly scans and welds the tuyere surface of the blast furnace and metallurgically combines with the substrate materials to form a good nickel-based toughness transition layer. The laser bandwidth clads the nickel-based toughness transition layer to produce a cobalt-based alloy with excellent effects of wear-resistant and heat-resistant. The technology process comprises the following steps: firstly the blast furnace tuyere is pre-treated; secondly the pre-deposited nickel-base alloy is coated with plasma; thirdly the nickel-based alloy is welded quickly by the high power laser; fourthly the cobalt-based alloy is clad by the high power laser bandwidth; finally is the following heat treatment. The invention can avoid the structure stress caused by the difference between the substrate material and the cladding material in the laser cladding process. In addition, the treatment to the copper substrate before and after laser cladding can decrease temperature gradient so as to prevent the cladding layer from cracking to a certain degree.
Owner:SHENYANG DALU LASER COMPLETE EQUIP

High-thermal-conductivity silicon nitride ceramic copper-clad plate and manufacturing method thereof

The invention discloses a high-thermal-conductivity silicon nitride ceramic copper-clad plate and a manufacturing method thereof and relates to the field of the copper-clad plate manufacturing technology. The high-thermal-conductivity silicon nitride ceramic copper-clad plate comprises a high-thermal-conductivity silicon nitride ceramic substrate and oxygen-free copper layers; the upper and lower surfaces of the high-thermal-conductivity silicon nitride ceramic substrate are respectively welded with the oxygen-free copper layers; and the welding is a high-temperature welding in a vacuum brazing furnace by using an active metal welding paste. The bending strength of the high-strength and high-thermal-conductivity silicon nitride ceramic substrate is 2-3 times that of an aluminum nitride ceramic substrate, and the cladding of the high-thermal-conductivity silicon nitride ceramic substrate and a thick copper substrate can be realized; the thermal conductivity is 3-4 times that of the aluminum nitride ceramic substrate, so that the heat dissipation performance of the substrate can be improved greatly; compared with a direct copper-cladding process, the active copper-welding process has higher interface bonding strength, less cavities and higher reliability. Therefore, the high-thermal-conductivity silicon nitride ceramic copper-clad plate has the features of high strength, high conductivity and high reliability.
Owner:HEBEI SINOPACK ELECTRONICS TECH

Method for manufacturing pure copper/copper chromium alloy composite contact material

InactiveCN101834077AOvercome the serious problem of macro segregationDense tissueElectric switchesMetallic material coating processesMelting tankWear resistance
The invention provides a method for manufacturing pure copper / copper chromium alloy composite contact material, comprising the following steps of: first, carrying out surface pretreatment on pure copper substrate; second, mixing 60-85 percent of copper powder and 15-40 percent of chromium powder evenly according to weight percentage , mixing binder and Cu-Cr powder according to the volume ratio of 1: 1.6-2, adding acetone for dilution and stirring into paste, and coating a Cu-Cr layer with the thickness of 1.2-1.8mm on the surface of the pure copper and drying at 80-100 DEG C in an oven; third, carrying out laser cladding by adopting a 5KW multifunctional CO2 crossflow laser, wherein the process parameters are that the output power is 1.5-2.5KW, the scanning speed is 6-15mm / s, the light spot diameter is 3mm, and single track cladding and overlapping rate of multi-track cladding is 30-45 percent, and protecting a molten pool with argon gas; and fourth, carrying out leveling and polishing treatment on the surface. In the method, a Cu-Cr alloy layer with good wear resistance and electrical erosion resistance can be obtained on the surface of the pure copper, so that the core part can remain the excellent conductivity of the pure copper.
Owner:HENAN POLYTECHNIC UNIV

Cantilever-type piezoelectric diaphragm pump

The invention discloses a cantilever-type piezoelectric diaphragm pump. The cantilever-type piezoelectric diaphragm pump is composed of a vibration excitation unit, a pump cavity body and a flow channel structure. The vibration excitation unit is composed of a pump body, an adjustable pressing mechanism, a piezoelectric vibrator, a vibration transmission piston and a PET diaphragm. The piezoelectric vibrator is composed of a copper substrate and a piezoelectric ceramic piece. Compared with the traditional method of periphery fixing or wave joint supporting of a circular oscillator, the method of cantilever supporting of the rectangular piezoelectric vibrator has the advantages that deflection is large, tail end output amplitude is large, and simple harmonic frequency is low. Meanwhile, the length of a cantilever of the rectangular piezoelectric vibrator is adjustable, and therefore a vibration system has different vibration characteristics so as to meet different requirements for output performance. The adopted PET diaphragm material has the advantages of being good in abrasive resistance, dimensional stability and electrical insulation, nontoxic, impermeable, light in weight and the like, and further has the advantages of being safe and reliable, free of pollution and the like as a pump cavity vibrating diaphragm for conveying chemical and medical liquid. The piezoelectric vibrator is not contacted with the conveyed liquid directly, and therefore the piezoelectric pump can work at high working voltage and is good in output performance.
Owner:JILIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products