Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

2190results about How to "Eliminate damage" patented technology

Method of forming silicon nitride film and method of manufacturing semiconductor device

A method of forming a silicon nitride film comprises: forming a silicon nitride film by applying first gas containing silicon and nitrogen and second gas containing nitrogen and hydrogen to catalyst heated in a reduced pressure atmosphere. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate having the semiconductor layer, a gate insulation film selectively provided on a principal surface of the semiconductor layer, and a gate electrode provided on the gate insulation film; and removing the silicon nitride film on the semiconductor layer and the gate electrode and leaving a sidewall comprising the silicon nitride film on a side surface of the gate insulation film and the gate electrode by etching the silicon nitride film in a direction generally normal to the principal surface of the semiconductor layer. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate including a semiconductor layer; forming an interlayer insulation layer on the silicon nitride film; forming a layer having an opening on the interlayer insulation layer; and etching the interlayer insulation layer via the opening in a condition where an etching rate for the silicon nitride film is greater than an etching rate for the interlayer insulation layer.
Owner:ULVAC INC

Method of forming silicon nitride film and method of manufacturing semiconductor device

A method of forming a silicon nitride film comprises: forming a silicon nitride film by applying first gas containing silicon and nitrogen and second gas containing nitrogen and hydrogen to catalyst heated in a reduced pressure atmosphere. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate having the semiconductor layer, a gate insulation film selectively provided on a principal surface of the semiconductor layer, and a gate electrode provided on the gate insulation film; and removing the silicon nitride film on the semiconductor layer and the gate electrode and leaving a sidewall comprising the silicon nitride film on a side surface of the gate insulation film and the gate electrode by etching the silicon nitride film in a direction generally normal to the principal surface of the semiconductor layer. A method of manufacturing a semiconductor device comprising the steps of: forming a silicon nitride film by the method as claimed in claim 1 on a substrate including a semiconductor layer; forming an interlayer insulation layer on the silicon nitride film; forming a layer having an opening on the interlayer insulation layer; and etching the interlayer insulation layer via the opening in a condition where an etching rate for the silicon nitride film is greater than an etching rate for the interlayer insulation layer.
Owner:ULVAC INC

Method of forming metal interconnection layer of semiconductor device

Various methods are provided for forming metal interconnection layers of semiconductor devices. One exemplary method for forming a metal interconnection layer of a semiconductor device includes forming an interlayer dielectric layer on a substrate, forming a hard mask layer on the interlayer dielectric layer, wherein the hard mask layer serves as an anti-reflection layer, depositing and patterning a first photoresist layer to form a first photoresist pattern on the hard mask layer, forming a partial via hole in the interlayer dielectric layer by etching the hard mask layer and the interlayer dielectric layer using the first photoresist pattern as an etching mask, removing the first photoresist pattern, depositing a second photoresist layer to fill the partial via hole with photoresist material and patterning the second photoresist layer to form a second photoresist pattern that defines a trench interconnection area which overlaps at least portion of the partial via hole, etching the hard mask layer using the second photoresist pattern as an etching mask to form a hard mask pattern, completely removing the second photoresist pattern and the photoresist material in the partial via hole, etching the interlayer dielectric layer using the hard mask pattern as an etching mask to form the trench interconnection area and to extend the partial via hole to form a full via hole, and filling the full via hole and the trench interconnection area with a conductive material.
Owner:SAMSUNG ELECTRONICS CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products