Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

72 results about "Code-excited linear prediction" patented technology

Code-excited linear prediction (CELP) is a speech coding algorithm originally proposed by M. R. Schroeder and B. S. Atal in 1985. At the time, it provided significantly better quality than existing low bit-rate algorithms, such as residual-excited linear prediction and linear predictive coding vocoders (e.g., FS-1015). Along with its variants, such as algebraic CELP, relaxed CELP, low-delay CELP and vector sum excited linear prediction, it is currently the most widely used speech coding algorithm. It is also used in MPEG-4 Audio speech coding. CELP is commonly used as a generic term for a class of algorithms and not for a particular codec.

Fixed codebook search method through iteration-free global pulse replacement and speech coder using the same method

Provided are a fixed codebook search method based on iteration-free global pulse replacement in a speech codec, and a Code-Excited Linear-Prediction (CELP)-based speech codec using the method. The fixed codebook search method based on iteration-free global pulse replacement in a speech codec includes the steps of: (a) determining an initial codevector using a pulse-position likelihood vector or a correlation vector; (b) calculating a fixed-codebook search criterion value for the initial codevector; (c) calculating fixed-codebook search criterion values for respective codevectors obtained by replacing a pulse of the initial codevector each time for respective tracks, and determining a pulse position generating the largest fixed-codebook search criterion value as a candidate pulse position for the respective tracks, respectively; (d) calculating fixed-codebook search criterion values for respective codevectors of all combinations obtained by replacing at least one pulse position of the initial codevector with the candidate pulse positions of the respective tracks, and determining the largest value of the fixed-codebook search criterion values; and (e) comparing the fixed-codebook search criterion value for the initial codevector obtained in step (b) with the largest value determined in step (d) to determine an optimum fixed codevector.
Owner:ELECTRONICS & TELECOMM RES INST
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products