Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

261 results about "Microplasma" patented technology

A microplasma is a plasma of small dimensions, ranging from tens to thousands of micrometers. Microplasmas can be generated at a variety of temperatures and pressures, existing as either thermal or non-thermal plasmas. Non-thermal microplasmas that can maintain their state at standard temperatures and pressures are readily available and accessible to scientists as they can be easily sustained and manipulated under standard conditions. Therefore, they can be employed for commercial, industrial, and medical applications, giving rise to the evolving field of microplasmas.

In situ sterilization and decontamination system using a non-thermal plasma discharge

A sterilization and decontamination system in which a non-thermal plasma discharge device is disposed upstream of a suspension media (e.g., a filter, electrostatic precipitator, carbon bed). The plasma discharge device generates a plasma that is emitted through apertures (e.g., capillaries or slits) in the primary dielectric. Plasma generated active sterilizing species when exposed to contaminants or undesirable particulate matter is able to deactivate or reduce such matter in contaminated fluid stream and/or on objects. Thus, the undesirable contaminants in the fluid to be treated are first reduced during their exposure to the plasma generated active sterilizing species in the plasma region of the discharge device. Furthermore, the plasma generated active sterilizing species are carried downstream to suspension media and upon contact therewith deactivate the contaminants collected on the suspension media itself. Advantageously, the suspension media may be cleansed in situ. To increase the sterilization efficiency an additive, free or carrier gas (e.g., alcohol, water, dry air) may be injected into the apertures defined in the primary dielectric. These additives increase the concentration of plasma generated active sterilizing agents while reducing the byproduct of generated undesirable ozone pollutants. Downstream of the filter the fluid stream may be further treated by being exposed to a catalyst media or additional suspension media to further reduce the amount of undesirable particulate matter.
Owner:PLASMASOL CORP +1

Analytical laser ablation of solid samples for ICP, ICP-MS, and FAG-MS analysis

The present invention facilitates improvements in laser ablation of solid samples to be analyzed by an external inductively coupled plasma (ICP) emission spectrometer, ICP/mass-spectrometer (ICP-MS), or flowing afterglow (FAG) mass spectrometer (FAG-MS) for elemental analysis (ICP and ICP-MS) or molecular analysis (FAG-MS). A novel invention mirror-with-hole beam combiner eliminates chromatic aberration in the invention sample view and allows rad-hardening the laser ablation invention for use in a radiation hot cell for analysis of high activity nuclear waste. Many other novel invention rad-hardening attributes facilitate a comprehensive rad-hardened laser ablation system (the world's first). In other embodiments, invention novelties include unusually large homogeneous focused laser spot diameters, unusually long laser objective lens focal length, wide range operationally variable laser path length with built-in re-alignment, operationally variable demagnification ratio and diameter of the focused laser spot, the use of significantly higher powered SMR lasers in a large spot diameter to facilitate high sensitivity bulk analysis of solid samples, a demountable and gravitationally self-sealing stack assembly laser ablation cell, and the world's first auto-samplers (mechanized sample changers) for analytical laser ablation.
Owner:FRY ROBERT C +3
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products