Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

5004 results about "Medium pressure" patented technology

The medium pressure range of industrial air compressors from the technology leader in high pressure features continuous duty rated, 3-stage, air cooled, pressure lubricated compressors for the most demanding requirements. The full-featured control system allows for unattended, automatic operation.

Power line coupling device and method

A power line coupler for communicating data signals over a power distribution system having a first and second overhead energized medium voltage power line conductors is provided. In one embodiment, the coupler includes a first lightening arrestor having a first end and a second end, wherein the first end of the first arrestor is connected to the first power line conductor. The coupler further includes a first high frequency impedance having a first end connected to the second end of the first lightening arrestor and the first impedance having a second end connected to a neutral conductor of the power line distribution system. The coupler may further include a second lightening arrestor having a first end and a second end, wherein the first end of the second arrestor is connected to the second power line conductor. The coupler further including a second high frequency impedance having a first end connected to the second end of the second lightening arrestor and a second end connected to the neutral conductor. The first high frequency impedance and the second high frequency impedance may each comprise an air core coil that forms an inductor. The coupler may further include a balun having a first winding and a second winding, wherein the first winding is coupled to a communication device, and wherein the second winding has a first end connected to the first end of the first high frequency impedance and a second end connected to the first end of the second high frequency impedance.
Owner:CHEMTRON RES

An energy-feedback type traction power supply device and its control method

The invention discloses an energy feeding type dragging power supply device and a control method thereof. The energy feeding type dragging power supply device comprises a multiple transformer and at least two four-quadrant converter modules. The energy feeding type dragging power supply device and a diode rectification dragging unit are arranged in parallel form. A primary side of the multiple transformer of the energy feeding type dragging power supply device is connected to an alternated current medium-voltage power grid through a high-voltage switch cabinet; each set of windings at a low-voltage side of the multiple transformer is connected to an alternated current side of one four-quadrant converter module; and the direct current sides of the four-quadrant converter modules are in parallel connection after being connected to a direct current side isolation switch and are connected to a direct current bus through a direct current switch cabinet and a cathode cabinet. The energy feeding type dragging power supply device can work at three different modes of dragging, feedback or SVG (Scalable Vector Graphics) according to the requirements. The energy feeding type dragging power supply device is compatible with an existing dragging power supply system under the condition of meeting a power grid compatibility demand. The energy feeding type dragging power supply device has the advantages of moderate cost, capability of solving the technical problems of feeding back a regenerated braking energy and stabilizing a dragging network voltage, and real-time static reactive power compensation capacity.
Owner:ZHUZHOU CSR TIMES ELECTRIC CO LTD

Modularized multi-level converter with auxiliary diode

The invention relates to a modularized multi-level converter with an auxiliary diode. The modularized multi-level converter comprises a three-phase valve body, and three active energy feedback circuits respectively connected to the three-phase valve body, wherein each phase of valve body comprises 2M half-bridge inversion units and 2M-1 auxiliary diodes; direct current capacitors of the 1-(2M-1)th serially connected half-bridge inversion units are respectively connected with one auxiliary diode, and the final (2M)th half-bridge inversion unit is serially connected to form the valve body; the 1-Mth half-bridge inversion units form the upper-half part of the valve body to output a negative polarity voltage; and the (M+1)th to 2Mth half-bridge inversion units form the lower-half part of the valve body to output a positive polarity voltage. The auxiliary diodes and the active energy feedback circuits form a capacitor voltage sharing loop, the modularized multi-level converter realizes capacitance self voltage sharing effect, and realizes that the unit capacitance voltage is measured by using less direct current voltage sensors, thus the detection and the control of multi-level topology are greatly simplified. The modularized multi-level converter can be used in occasions such as reaction compensation and harmonic treatment of a medium-voltage or high-voltage power grid.
Owner:TSINGHUA UNIV

Refrigerator

A high-pressure side discharge port of a two-stage compressor (12A) and a condenser (14A) are connected, condenser (14A) and a PMV (15A) are connected, a refrigerating side exit of PMV (15A) is connected to a medium pressure side suction port of two-stage compressor (12A) via an R capillary tube (16A) and an F evaporator (18A), connected to an F evaporator (26A) via an F capillary tube (24A), F evaporator (26A) is connected to a low-pressure side suction port of two-stage compressor (12A) via a low-pressure suction pipe (28A), PMV (15A) can switch a simultaneous cooling mode and a freezing mode, and in the simultaneous cooling mode, a refrigerant flow rate toward R evaporator (18A) is adjusted by PMV (15A), and thereby a temperature difference control is performed so as to make a difference between an entrance temperature and an exit temperature of R evaporator (18A) equal to a preset temperature difference (for example, 4° C.).
A controller (22), on the basis of the detection condition of a temperature sensor (23) for a freezing chamber and a temperature sensor (24) for a refrigerating chamber, controls a freezing cycle device (10). Here, controller (22) controls an opening of a regulating valve (12) so as to make a superheat amount which is a difference between an exit temperature and an entrance temperature of a refrigerating evaporator (5) equal to a target superheat amount, and thereby adjusts a refrigerant flow rate to refrigerating evaporator (5) in a limited state.
In this case, when a power is turned on, the entrance temperature and the exit temperature of refrigerating evaporator (5) are the same, so that controller (22), when the power is turned on, calibrates detected temperatures of an entrance temperature sensor (27) and an exit temperature sensor (26) so as to coincide with each other, and thereby can execute surely the subsequent limiting adjustment of regulating valve (12) on the basis of the superheat amount.
Further, in this case, when a refrigerant supply to refrigerating evaporator (5) is stopped and the temperature of refrigerating evaporator (5) rises suddenly, controller 22 increases an opening of a valve opening (42) to refrigerating evaporator (5) of regulating valve (12) to a predetermined return value, so that the refrigerant supply amount to refrigerating evaporator (5) is increased at a stretch, and thus the refrigerating evaporator can be cooled quickly.
A refrigerator having a two-stage compressor (12A) for cooling efficiently both a refrigerating chamber (2A) and a freezing chamber (5A) will be provided.
When limiting and adjusting a refrigerant flow rate to one evaporator according to an opening of a valve body so as to make a superheat amount of one evaporator appropriate on the basis of the superheat amount which is a difference between an exit temperature and an entrance temperature of one evaporator, a refrigerator for detecting accurately the entrance temperature and the exit temperature of one evaporator will be provided.
When limiting and adjusting a refrigerant flow rate to one evaporator according to an opening of a valve body, a refrigerator for causing no delay in a refrigerant supply to one evaporator will be provided.
Owner:TOSHIBA HA PROD +2

Energy-saving and emission-reducing technique for producing propane epoxide by using hydrogen peroxide epoxidation propylene

The invention relates to an energy-saving and emission-reducing technique for producing propane epoxide by using hydrogen peroxide epoxidation propylene, belonging to the field of petrochemical technology. The technique comprises a reaction part, a separation part and a tail gas treatment part, and is characterized in that propylene and hydrogen peroxide have an epoxidation reaction through a Ti-Si molecular sieve at medium pressure and low temperature; the propylene and solvent have higher recovery rate, the propane epoxide meeting the requirement of commercial-grade purity can be obtained by extractive distillation, and the joint product of propylene glycol monomethyl ether can be prepared by azeotropic distillation and purification; after part of tail gas is condensed and absorbed and the propylene is recovered, the tail gas reaches the standard and is discharged; extracting agent, absorbing agent and entrainer which are needed by the technique are in closed cycle in the process flow; and medium-pressure operation is adopted by a propylene tower to ensure water-cooling on the top of the tower, and thermal energy can be recovered by multiple-effect rectification and matching of streams. The technique has the effect and the advantage that the new energy-saving and environment-friendly technique for producing the propane epoxide can generate remarkable economic and social benefits.
Owner:DALIAN UNIV OF TECH

Heat pump type hot water supply outdoor apparatus

ActiveUS20090241569A1High hot water supply/heating capabilityHighly effective hot water supply/heating operationMechanical apparatusCompression machines with non-reversible cyclePlate heat exchangerCondensation temperature
A heat pump type hot water supply outdoor apparatus, in a compressor, a water heat exchanger, a first expansion valve, a medium pressure receiver, a second expansion valve, and an air heat exchanger are connected circularly, has an injection circuit, which is a bypass for a part of the refrigerant between the medium pressure receiver and the second pressure reduction unit, to inject the part of refrigerant into a compression chamber of the compressor, and has a third expansion valve and an internal heat exchanger for carrying out heat exchange between the refrigerant whose pressure is reduced by the third expansion valve and the refrigerant between the medium pressure receiver and the second expansion valve, a pressure detection sensor for detecting a condensing pressure, and a controller for starting an injection control by the third expansion valve at the time when the condensing pressure detected by the pressure sensor or the condensing temperature calculated from the condensing pressure becomes a first predetermined value or more and stopping the injection control at the time when the condensing pressure or the condensing temperature becomes a second predetermined value which is smaller than the first predetermined value, or less. With this arrangement, an appropriate injection control can be realized and a high hot water supply/heating capability operation can be carried out.
Owner:MITSUBISHI ELECTRIC CORP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products