Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

567 results about "Function generator" patented technology

A function generator is usually a piece of electronic test equipment or software used to generate different types of electrical waveforms over a wide range of frequencies. Some of the most common waveforms produced by the function generator are the sine wave , square wave, triangular wave and sawtooth shapes. These waveforms can be either repetitive or single-shot (which requires an internal or external trigger source). Integrated circuits used to generate waveforms may also be described as function generator ICs.

Infrared lock-in thermal wave non-destructive detection method based on image sequence processing

InactiveCN102033081AGuaranteed to be clearly visibleShort Spectral Power DistributionMaterial flaws investigationData acquisitionFunction generator
The invention discloses an infrared lock-in heat wave non-destructive detection method based on image sequence processing, which is a new method for realizing infrared lock-in heat wave non-destructive detection by using computer software to process the sequence of infrared images. The method comprises the following implementation steps: using a focal plane infrared heat imager to collect the image sequence of heat wave signals, using a halogen light source modulated by sine law to excite, carrying out digital lock-in processing on heat wave signals and analysis of feature images. When the method is used for non-destructive detection, the focal plane infrared heat imager 5 is fixed on a tripod 16 and connected with a data acquisition card of a computer 11, and infrared lock-in processing software 12 based on the image sequence is used for finishing initialization and image display of the infrared heat imager. The halogen light source 6 is fixed on a special support 7 to ensure that incident light is irradiated in an area to be detected of a sample piece 2 as far as possible, a function generator 14 is connected with a light source power amplifier 13 through a signal wire 15, and light intensity of the halogen light source 6 is controlled to change by the sine law. The incident light of the halogen light source 6 is irradiated to the surface of the sample piece 2 to generate excited heat waves 4. The infrared lock-in processing software 12 based on the image sequence records reflected heat waves 3 or transmitted heat waves 1 generated on the surface of the sample piece 2, a lock-in processing module is used for extracting feature information of the heat wave signals and forming the feature images, an image processing and analyzing module processes and analyzes the heat wave feature images, and inner defect features of the sample piece 2 are extracted, so as to realize fast and accurate non-destructive detection of inner defects and damages of the sample piece 2.
Owner:HARBIN INST OF TECH

Method for non-linear ultrasonic online detection of early fatigue damage to metal material

InactiveCN101806778ARealize the whole process of fatigue detectionSolve misjudgmentMaterial analysis using acoustic emission techniquesFatigue damageSonification
A method for the non-linear ultrasonic online detection of early fatigue damage to a metal material belongs to the field of nondestructive detection. The method comprises the following steps: determining an excitation signal parameter according to the thickness of a tested piece and inputting the parameter to an arbitrary function generator to generate a sound signal; determining a threshold value of an acoustic emission instrument according to the amplitude of a no-load noise signal; performing fatigue loading on the tested piece, continuously detecting an acoustic emission signal in real time with an acoustic emission sensor, amplifying the acoustic emission signal, inputting the acoustic emission signal into the acoustic emission instrument, and judging ring with the acoustic emission instrument when the amplitude of the acoustic emission signal exceeds the preset the threshold value of the acoustic emission instrument; detecting a non-linear ultrasonic signal at equal time interval if the acoustic emission instrument does not display the ring or the times of the continuous ring is not more than an empirical value; and stopping detection if the displayed ring times is more than the empirical value, because fatigue cracks are generated and develop. On the basis of non-linear ultrasonic nondestructive detection, the method of the invention introduces acoustic emission technique, so the method does not make incorrect judgment when detecting the early fatigue damage to the metal material and realizes continuous online detection.
Owner:BEIJING UNIV OF TECH

Quartz tuning fork strengthened photoacoustic spectroscopy gas sensor based on acoustic resonator

The invention discloses a quartz tuning fork strengthened photoacoustic spectroscopy gas sensor based on an acoustic resonator. The gas sensor comprises a laser (1), a focusing lens (5), a tubular resonator, a quartz tuning fork (11), a function generator (15) electrically connected with the laser (1) and a lock-in amplifier (14) electrically connected with the quartz tuning fork (11), wherein the focusing lens (5) and the tubular resonator are arranged on an optical path (2) of the laser (1); the function generator (15) is electrically connected with the lock-in amplifier (14); the tubular resonator is the acoustic resonator (9) with a slit (91) in the middle; the length of the acoustic resonator is not more than 10mm, the external diameter is not more than 1mm and the internal diameter is not more than 0.6mm; the width of the slit (91) is not more than 0.2mm and the length is not more than the internal diameter of the acoustic resonator (9); prongs (111) of the quartz tuning fork (11) are positioned on the slit (91) and the distances between the prongs (111) and the slit (91) are not less than 0.001mm. The gas sensor has simple structure, small volume and strong anti-jamming property, works stably, is convenient to adjust and use and can be extensively used for detecting the components or contents of the gases.
Owner:ANHUI INST OF OPTICS & FINE MECHANICS - CHINESE ACAD OF SCI

Device and method for detecting pipeline closed cracks based on vibro-acoustic modulation technology

The invention relates to a device and a method for detecting pipeline closed cracks based on the vibro-acoustic modulation technology and belongs to the pipeline nondestructive testing field. The device provided by the invention comprises a computer, a first function generator, a second function generator, a first power amplifier, a second power amplifier, a vibration exciter, an accelerometer, acharge amplifier, a first thickness concertina-type piezoelectric ceramic sheet array and a second thickness concertina-type piezoelectric ceramic sheet array, an anti-aliasing filter and a data collection card. The method provided by the invention comprises the following steps of: acquiring a pipeline first-order bending vibration inherent frequency by swept frequency excitation; taking the frequency as the one of low-frequency vibration in the vibro-acoustic modulation detection; simultaneously exciting low-frequency bending vibration and high-frequency supersonic waves into the pipeline, determining whether there exists closed cracks inside the pipeline by the existence of frequency components which equal high frequency supersonic wave frequency subtracts or adds low frequency bending vibration frequency in a received signal frequency spectrogram. The device provided by the invention is utilized to solve the problem that it is hard to detect closed cracks by traditional methods, and can be applied to detect closed cracks in industrial pipelines.
Owner:BEIJING UNIV OF TECH

Two quantum cascade laser spectrum-based multicomponent gas simultaneous detection device and method

The present invention relates to the technical field of laser spectrum detection and gas detection, and in particular relates to a two quantum cascade laser spectrum-based multicomponent gas simultaneous detection device and method. An arbitrary waveform function generator outputs a periodic signal which only superposes high-frequency modulation signals in any half period to be used as a laser current signal, a room temperature continuous mode mid-infrared quantum cascade laser is driven by a current control unit, the laser emits a laser signal, the laser signal passes sequentially through a focusing collimating three-dimensional adjustment system, a first mirror, a sample absorption pool and a off-axis parabolic mirror to be reflected to a first detector, the first detector passes the laser signal through a data acquisition unit to convert into an electrical signal and transmit to a computer, and information of the gas to be measured can be obtained by analysis and processing of the electrical signal by the computer. The devices simultaneously utilizes two spectrums for gas detection, and has the advantages of high detection sensitivity, high detection accuracy, no need of external standard gas calibration, simple optical path adjustment, fast response, and stability, and the like.
Owner:ANHUI UNIVERSITY

16 bit quadrature direct digital frequency synthesizer using interpolative angle rotation

A direct digital synthesizer employs a trigonometric function generator utilizing decomposition of a larger angle into smaller sub-angles, interpolation of a desired sub-angle between two known angles and calculating the trigonometric function using complex arithmetic. The direct digital synthesizer has a phase accumulator to generate an angular increment signal of the output signal. A trigonometric function generator in communication with the phase accumulator receives the angle signal and from the angle signal creates the trigonometric function signal. An angle decomposing circuit is connected to receive the angle signal to separate the angle signal into sub-angles of the angular increment, a sum of the sub-angles equaling the angular increment. An interpolation circuit receives the smallest of the sub-angles to generate the trigonometric function for the smallest of the sub-angles by interpolating between the trigonometric function of two known angles. The direct digital synthesizer has a first angle trigonometric retaining for retaining the trigonometric functions of the known angles. At least one second angle trigonometric retaining circuit retains the trigonometric functions of for the remaining sub-angles. A complex arithmetic unit combines the interpolated trigonometric function and the second trigonometric function from each of the second angle trigonometric retaining circuits to create the trigonometric function.
Owner:QUALCOMM INC

System and method for detecting CO gas based on quartz tuning fork enhanced photoacoustic spectrometry technology

The invention provides a system and a method for detecting CO gas based on a quartz tuning fork enhanced photoacoustic spectrometry technology, relates to a system and a method for detecting the CO gas and aims at solving the problem of low detection accuracy of the existing CO gas photoacoustic spectrometry detection technology. A data processing module transmits a current control signal to a laser device controller via a function generator, and meanwhile, transmits a temperature control parameter to the laser device controller; the laser device controller drives a laser device to emit near infrared laser which is incident into a gas chamber after being collimated and focused; the gas absorbs optical energy so that the optical energy is converted into heat energy and further converted into an acoustic pressure signal; a quartz tuning fork mounted in the gas chamber converts an acoustic signal into an electric signal; the electric signal of the quartz tuning fork is converted and amplified and then input into the measurement channel input end of a phase-locked amplifier; the phase-locked amplifier inverts the concentration of the CO gas to be detected by performing secondary harmonic detection in combination with the reference signal of the function generator. The system and the method for detecting the CO gas based on the quartz tuning fork enhanced photoacoustic spectrometry technology are applicable to CO gas detection.
Owner:NORTHEAST FORESTRY UNIVERSITY

Method for integrating carbon nanotube with CMOS chip into array-type microsensor

The invention disclosed a method for integrating CMOS circuit chips with carbon nanotubes (CNTs) into array-type sensors with signal processors enclosed. The method provides low-temperature and wafer-level fabrication processes including dripped a drop of dispersed CNTs solution on the top of CMOS chip, use micro probe card to contact with pairs of pads, with a function generator to generate dielectrophoresis (DEP) signal and with a lock-in amplifier to measure impedance value simultaneously. According to the impedance measurement it can detect the number of CNTs fixed on pair of pads. Only if the number of CNTs on the top of pair of pads were not expected, it would readjust the frequency of alternating current to the range of negative DEP force and repel CNTs from the top of pair of pads. Repeat positive DEP signal to attach CNTs until the number of CNTs as demand, then hold the DEP force until CNTs solution evaporated to make a well-contact between CNTs and pads. Furthermore, the surface of CNTs can be functionalized and let CNTs have high sensitivity to ambient molecules (Gas molecules, Bio molecules, et al.), then transfer the measured signal into signal processors of CMOS chips, the processors could be impedance measurement unit, current measurement unit, conductance measurement unit et. al., and it can measure, record and analyze the data of small varied signal directly.
Owner:HUANG JUNG TANG

Fourier transform chip spectrometer based on integrated light technique

The invention discloses a Fourier transform chip spectrometer based on integrated light technique, comprising an integrated optical waveguide chip having electro-optic modulation function. Light from a light source enters the integrated optical waveguide chip through a fiber transmission coupler, and waveguide light from the chip enters an optical waveguide interferometer through a sensitive window interval. The interferometer outputs signals to a photoelectric detector. A voltage function generator is used for applying voltages varying with time between two modulated electrodes of the optical waveguide interferometer, the photoelectric detector is used for real-time measuring the change of the signal strength of the interferometer varying with the modulated voltage, and a signal processing chip connected with the photoelectric detector and the voltage function generator at same time is used for rapidly processing Fourier transform on the signals of the interferometer to obtain an incident light spectrum. The Fourier transform chip spectrometer provided by the invention can determine visible-infrared light absorbing spectra of solids, liquid, even monomolecular adsorption layers in the sensitive window, and determine fluorescence spectra of fluorescent substances in the sensitive window, with the advantages of strong anti-interference capability, and is suitable for rapid on-site quantitative determination.
Owner:INST OF ELECTRONICS CHINESE ACAD OF SCI

Constant envelope multiplexing method and of double-frequency four-component spread spectrum signals and receiving method of constant envelope multiplexed signal

ActiveCN103023598ABasic Ranging PerformanceRanging Performance ImprovementsBaseband system detailsMultiplex code generationMultiplexingCarrier signal
The invention discloses a constant envelope multiplexing method of double-frequency four-component spread spectrum signals. The method comprises the following steps of: generating four signal components as corresponding baseband spread spectrum signals, and obtaining corresponding additional phase according to the value combination state of the baseband spread spectrum signals within the current period of time; generating a pair of components, of which the phases are orthogonal to each other, by the additional phase through a trigonometric function generator; generating two paths of carriers, which are orthogonal to each other, by a carrier generator, respectively multiplying the carriers by the generated components, and executing subtraction on the products to get a radio frequency signal meeting the constant envelope condition. The invention also provides a generation device of the constant envelope multiplexed signal, and a receiving method of the constant envelope multiplexed signal. According to the constant envelope multiplexing method, four signal components of two frequency points are synthesized into one constant envelope signal, so that low-range and medium-range receivers can process the signal with narrower receiving bandwidth and lower baseband so as to obtain the basic ranging performance, high-range receivers can get better ranging accuracy by wider receiving bandwidth and higher processing complexity, and the ranging performance of the receivers during receiving each signal component respectively is improved.
Owner:TSINGHUA UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products