Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

878 results about "Load regulation" patented technology

Load regulation is the capability to maintain a constant voltage (or current) level on the output channel of a power supply despite changes in the supply's load (such as a change in resistance value connected across the supply output).

Multiple stage sequential current regulator

An LED driver circuit operating from the AC power line providing high efficiency, good line and load regulation, high power factor, low line current harmonics, low conducted EMI, high LED utilization, and lamp dimming compatibility, while consisting of a minimal number of components. No inductors, nor capacitors (including electrolytics), nor high current switching transistors are employed. The top of a string of series connected LED segments is connected to the output of a rectifier, which in turn is connected to an AC sine wave power source. The string is tapped at various locations, including the bottom of the string. Each segment can consists of any number of serial or parallel connected LEDs. Current control elements or regulators sink current at each tap and are sequentially turned on and off one at a time, tracking the rectified sine wave voltage. Voltage across each regulator and current when conducting is individually controllable. Power loss in the regulators is minimized by keeping regulator voltage to a minimum. The regulators may control current in a multitude of ways, including a constant current, or a current dependent on voltage across the regulators including a resistor, or a combination. The driver is self-commutating, with the sequencing of the current control elements an inherent feature closely integrated with the current control elements and providing optimal performance over variable operating conditions. Given the large number of design variables, the driver circuit can be optimized for various performance criteria including input voltage range, line / load regulation, output power / current, efficiency, power factor, line current harmonics, dimmer compatibility, and LED utilization.
Owner:MICROCHIP TECH INC

Method and apparatus for electronic power control

The method of the invention in one aspect involves electronic power control by varying the amplitude of an electrical power supply voltage, independent of frequency, whereby the output frequency will always be the same as the input frequency. An electrical circuit apparatus for accomplishing this function in a specific embodiment is also disclosed herein. The specific circuitry of this aspect of the invention uses eight solid state switches, such as IGBT's, eight diodes, an inductor, input and output filters and novel controlling circuitry. The controller apparatus and methods of the invention may be used to implement all otherwise conventional converter types, buck, boost, and inverting (and duals of these) versions to obtain different regulating characteristics, including galvanic isolation of the output from the input. Indeed, the eight-switch controller can act to either buck or boost the input voltage, and can switch between bucking and boosting during a cycle, thus providing more control of the regulated output voltage. The inventive methods and devices may be used in power factor correction, voltage and/or current harmonic filtering and neutralization, line and load conditioning, control of power transfer between two power grids, and programmable control of surges, sags, dropouts and most other voltage regulation problems.
Owner:MICROPLANET

High efficiency power conversion circuits

A composite high voltage schottky rectifier is revealed that provides a forward voltage slightly larger than a low voltage schottky rectifier combined with a high voltage breakdown capability. The composite rectifier can be formed from the combination of a low voltage schottky rectifier, a high voltage mosfet, and a few small passive components. A quarter bridge primary switching network similar in some ways to a half bridge primary switching network is revealed. The quarter bridge network consists of four switches with voltage stress equal to half the line voltage and the network applies one quarter of the line voltage to a primary magnetic circuit element network thereby reducing the number of primary winding turns required to one quarter by comparison to a common full bridge network. A synchronously switched buck post regulator is revealed for multi-output forward converters. The synchronously switched buck post regulator accomplishes precise independent load regulation for each output and reduced magnetics volume by using a coupled inductor with a common core for all outputs plus a second smaller inductor for each output except the highest voltage output. An improved capacitor coupled floating gate drive circuit is revealed that provides an effective drive mechanism for a floating or high side switch without the use of level shifting circuits or magnetic coupling. The capacitor coupled floating gate drive circuit is an improvement over prior art capacitor coupled floating gate drive circuits in that the new circuit uses a positive current feedback mechanism to reject slowly changing voltage variations that cause unintentional switch state changes in prior art capacitor coupled floating gate drive circuits.
Owner:TECHN WITTS

Method and apparatus for electronic power control

The method of the invention in one aspect involves electronic power control by varying the amplitude of an electrical power supply voltage, independent of frequency, whereby the output frequency will always be the same as the input frequency. An electrical circuit apparatus for accomplishing this function in a specific embodiment is also disclosed herein. The specific circuitry of this aspect of the invention uses eight solid state switches, such as IGBT's, eight diodes, an inductor, input and output filters and novel controlling circuitry. The controller apparatus and methods of the invention may be used to implement all otherwise conventional converter types, buck, boost, and inverting (and duals of these) versions to obtain different regulating characteristics, including galvanic isolation of the output from the input. Indeed, the eight-switch controller can act to either buck or boost the input voltage, and can switch between bucking and boosting during a cycle, thus providing more control of the regulated output voltage. The inventive methods and devices may be used in power factor correction, voltage and / or current harmonic filtering and neutralization, line and load conditioning, control of power transfer between two power grids, and programmable control of surges, sags, dropouts and most other voltage regulation problems.
Owner:MICROPLANET

Dual interleaved DC to DC switching circuits realized in an integrated circuit

Dual interleaved DC to DC switching circuits realizable in an integrated circuit form, capable of monitoring individual inductor current using only one current sense resistor and providing automatic duty cycle adjustment to keep the inductor currents in the interleaved DC to DC switching circuits balanced. The preferred embodiment includes a gain error amplifier, an integral error amplifier, and a differentiator error amplifier and circuits for controlling the nominal duty cycle, with the gain error amplifier, integral error amplifier and differentiator error amplifier being adjustable independently by external components. The circuit further includes a high speed load regulation circuit that momentarily overrides the control circuitry to take over control of the interleaved converters during sudden load changes, such control also being programmable. The circuit further includes a load variation circuit to target the output voltage of the circuit to an optimal value with load to better keep the output voltage within a targeted range in the event of major step changes in the load. The disclosed embodiment is for two interleaved buck converters, though the principles of the invention are applicable to interleaved step up converters and the interleaving of more than two converters.
Owner:MAXIM INTEGRATED PROD INC

Testing system for loads of frequency converters

The invention provides a testing system for loads of frequency converters, which comprises a power supply transformer, at least one testing module and a controller. The power supply transformer outputs at least one power supply voltage, each testing module comprises at least one frequency converter to be measured and a load testing cabinet, each load testing cabinet is used as a variable load to adjust output of the corresponding frequency converter to be measured and outputs corresponding alternating-current voltage to an output end of the power supply transformer, the controller controls the magnitude of the load testing cabinet of each testing module when the load testing cabinet is used as the variable load, and accordingly the output of the frequency converters to be measured is adjusted by the aid of the load testing cabinets. A three-phase reactor is directly disposed at an output end of each frequency converter to be measured so as to realize filtering processing, and accordingly a running mode of each frequency converter with a motor load is simulated. In addition, the frequency converters with different voltage grades can be loaded and tested under the condition without the motors, residual electric energy is fed back to the output end of the power supply transformer to be recycled, and accordingly energy is saved.
Owner:DELTA ELECTRONICS SHANGHAI CO LTD +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products