Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

205 results about "Femoral artery" patented technology

The femoral artery is a large artery in the thigh and the main arterial supply to the thigh and leg. It enters the thigh from behind the inguinal ligament as the continuation of the external iliac artery.

Non-cylindrical prosthetic valve system for transluminal delivery

InactiveUS20070043435A1Preventing substantial migrationEliminate the problemBalloon catheterHeart valvesCoronary arteriesProsthesis
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable prosthesis frame. If desired, one or more expandable anchors may be used. The prosthesis frame, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. Portions of the prosthesis frame may expand to a preset diameter to maintain coaptivity of the replacement valve and to prevent occlusion of the coronary ostia. The prosthesis frame is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart. When the outer sheath is retracted, the prosthesis frame expands to an expanded position such that the valve and prosthesis frame expand at the implantation site and the anchor engages the lumen wall. The prosthesis frame has a non-cylindrical configuration with a preset maximum expansion diameter region about the valve opening to maintain the preferred valve geometry. The prosthesis frame may also have other regions having a preset maximum expansion diameter to avoid blockage of adjacent structures such as the coronary ostia.
Owner:MEDTRONIC COREVALVE

Prosthetic Valve for Transluminal Delivery

InactiveUS20100004740A1Preventing substantial migrationEliminate the problemBalloon catheterHeart valvesVenous accessImplantation Site
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable valve support. If desired, one or more anchors may be used. The valve support, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. Portions of the valve support may expand to a preset diameter to maintain coaptivity of the replacement valve and to prevent occlusion of the coronary ostia. A radial restraint, comprising a wire, thread or cuff, may be used to ensure expansion does not exceed the preset diameter. The valve support may optionally comprise a drug elution component. The anchor engages the lumen wall when expanded and prevents substantial migration of the valve assembly when positioned in place. The prosthetic valve assembly is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart. A blood pump may be inserted into the catheter to ensure continued blood flow across the implantation site during implantation procedure. When the outer sheath is retracted, the prosthetic valve assembly expands to an expanded position such that the valve and valve support expand at the implantation site and the anchor engages the lumen wall. Insertion of the catheter may optionally be performed over a transseptally delivered guidewire that has been externalized through the arterial vasculature. Such a guidewire provide dual venous and arterial access to the implantation site and allows additional manipulation of the implantation site after arterial implantation of the prosthetic valve. Additional expansion stents may be delivered by venous access to the valve.
Owner:MEDTRONIC COREVALVE

Handle for suturing apparatus

Methods and apparatus are provided for closing incisions within biological tissue. In one embodiment, a device and method are provided for suturing biological tissue, such as, for example, an organ or blood vessel. The suturing apparatus is particularly well suited for suturing an incision made in an artery, such as the femoral artery, following a catheterization procedure. The device eliminates the need to apply pressure to a patient's thigh for an extended period of time, and eliminates many of the complications and costs associated with the creation of a thrombus patch. In addition, the device comprises an improved handle portion which enables the physician to quickly and easily apply suture. The handle portion is very reliable and easy to manipulate. The suturing may be used in combination with existing catheter sheath introducers.
Owner:SCARAB TECH SERVICES LLC +6

Renal blood flow augmentation for congestive heart failure treatment

Intravascular devices are delivered to the aorta percutaneously via the femoral artery. The devices are anchored within the vasculature in the region of the renal artery ostia. These embodiments function to increase the flow of blood from the aorta to the renal arteries, thus delivering a higher relative percentage of the blood flowing through the aorta to the kidneys. The elevation in blood low to the kidneys improves the natural removal of excess fluids from the body. In one embodiment, the device is a diverter element positionable upstream of the renal artery ostia. In another embodiment, the device is a flow restrictor positionable downstream of the ostia to cause an elevation is pressure upstream of the ostia.
Owner:SYNECOR LLC

Vascular sealant delivery device and sheath introducer and method

A sheath introducer is inserted through the skin and into a body lumen, e.g., the femoral artery, for a medical procedure. Upon completion of the medical procedure, the sheath introducer is partially withdrawn from the body lumen so that at least one through-wall hole in a body region of the sheath introducer is positioned outside the body lumen, but under the skin. An opening in a distal end tip of the sheath introducer is sealed so that no blood is flowing into the sheath introducer the after sheath introducer is partially withdrawn. A surgical sealant is injected into the sheath introducer and flows out of the at least one through-wall hole and surrounds the access site. After injection of the surgical sealant, the sheath introducer is removed. The surgical sealant seals the puncture and minimizes any blood flow from the body lumen through the puncture.
Owner:MEDTRONIC VASCULAR INC

Method for delivering a fluid to the coronary ostia

InactiveUS6913601B2Maintenance stopReduce in quantityGuide needlesStentsMinimally invasive cardiac surgeryCoronary artery ostium
A catheter system is provided for accessing the coronary ostia transluminally from a peripheral arterial access site, such as the femoral artery, and for inducing cardioplegic arrest by direct infusion of cardioplegic solution into the coronary arteries. In a first embodiment, the catheter system is in the form of a single perfusion catheter with multiple distal branches for engaging the coronary ostia. In a second embodiment, multiple perfusion catheters are delivered to the coronary ostia through a single arterial cannula. In a third embodiment, multiple perfusion catheters are delivered to the coronary ostia through a single guiding catheter. In a fourth embodiment, multiple catheters are delivered to the coronary ostia through a single guiding catheter which has distal exit ports that are arranged to direct the perfusion catheters into the coronary ostia. In each embodiment, the catheters are equipped with an occlusion means at the distal end of the catheter for closing the coronary ostia and isolating the coronary arteries from the systemic blood flow. The occlusion means can take the form of an inflatable occlusion balloon cuff, a tapered occlusion device or an O-ring encircling the distal end of the catheter. An optional ventricular venting catheter can be included in the system for venting blood and fluids from the left ventricle of the heart. The catheter system is combined with a femoral-to-femoral cardiopulmonary bypass system to provide a system for cardioplegic arrest and total cardiopulmonary support during minimally invasive cardiac surgical procedures.
Owner:EDWARDS LIFESCIENCES LLC

Femoral compression device with support

A femoral compression device includes a pressure applying device for compressive bearing at a puncture site at a femoral artery of a patient and for applying pressure on the puncture site, a belt adapted to be fixed around the patient's body, and a base plate provided with first and second extensions, with the end of the first extension being closer to the pressure applying device than the end of the second extension and being provided with a fastener in the ends thereof for fastening of an end of the belt. The compression device also includes a support plate, which is attached to the second extension and which is adapted to bear against the patient's body, thereby compensating for the imbalance, which originates from the different extents of the two extensions, that otherwise would be present.
Owner:ST JUDE MEDICAL COORDINATION CENT

Preventing and/or treating cardiovascular disease and/or associated heart failure

Methods are provided for reducing copper values for, by way of example, treating, preventing or ameliorating tissue damage such as, for example, tissue damage that may be caused by (i) disorders of the heart muscle (for example, cardiomyopathy or myocarditis) such as idiopathic cardiomyopathy, metabolic cardiomyopathy which includes diabetic cardiomyopathy, alcoholic cardiomyopathy, drug-induced cardiomyopathy, ischemic cardiomyopathy, and hypertensive cardiomyopathy, (ii) atheromatous disorders of the major blood vessels (macrovascular disease) such as the aorta, the coronary arteries, the carotid arteries, the cerebrovascular arteries, the renal arteries, the iliac arteries, the femoral arteries, and the popliteal arteries, (iii) toxic, drug-induced, and metabolic (including hypertensive and / or diabetic disorders of small blood vessels (microvascular disease) such as the retinal arterioles, the glomerular arterioles, the vasa nervorum, cardiac arterioles, and associated capillary beds of the eye, the kidney, the heart, and the central and peripheral nervous systems, (iv) plaque rupture of atheromatous lesions of major blood vessels such as the aorta, the coronary arteries, the carotid arteries, the cerebrovascular arteries, the renal arteries, the iliac arteries, the fermoral arteries and the popliteal arteries, (v) diabetes or the complications of diabetes.
Owner:PHILERA NEW ZEALAND +1

Gene therapies for enhancing cardiac function

The transgene-inserted replication-deficit adenovirus vector is effectively used in in vivo gene therapy for peripheral vascular disease and heart disease, including myocardial ischemia, by a single intra-femoral artery or intracoronary injection directly conducted deeply in the lumen of the one or both femoral or coronary arteries (or graft vessels) in an amount sufficient for transfecting cells in a desired region.
Owner:RGT UNIV OF CALIFORNIA

Femoral compression device with progressive pressure device

A femoral compression device (1; 41; 51; 61) for compressing a femoral artery of a patient is provided. The femoral compression device (1; 41; 51; 61) comprises a pressure device (7; 21; 31; 42; 55; 62), a compression member (8; 43; 56; 65) for compressive bearing against a puncture site, a base portion (3; 44; 52) provided with two opposing extensions (4, 5; 45, 46; 53, 54), to the ends of which a belt (6), which is adapted to be arranged around the patient's body, can be fixed. According to the invention, the pressure device (7; 21; 31; 42; 55; 62) is characterized by non-uniform overall action constants, such that when a low compression pressure is applied, the pressure device (7; 21; 31; 42; 55; 62) exhibits a small action constant, and when a high compression pressure is applied, the pressure device (7; 21; 31; 42; 55; 62) exhibits a large action constant.
Owner:ST JUDE MEDICAL COORDINATION CENT

Magnetohydrodynamic cardiac assist device

A left ventricular assist device (LVAD) utilizing MHD principles, wherein an aortic electrode assembly is located within a main femoral artery in the aorta, in the vicinity of the heart of a patient, which electrode assembly is exposed to a high density magnetic field generated outside of the patient. The high density magnetic field urges electrified blood within the artery in the vicinity of the electrode along the length of the electrode in a uniform direction, thereby providing a fluid pumping force and pressure commensurate with the magnetic field strength and electrode current in accordance with MHD theory and practice. A cardio bypass system is also taught, wherein in addition to the aortic electrode assembly, as second electrode assembly is placed in the inferior vena cava having an opposite electrode polarity to the aortic electrode assembly, such that the second electrode assembly directs blood flow toward the heart. In the preferred embodiment of the invention, the magnetic field is generated exterior of the patient via a superconducting magnet which is designed to bridge the torso of the patent, such that the electrodes are generally centrally disposed within the magnetic field, along a longitudinal axis aligned with the aorta (and inferior vena cava), and generally orthogonal to the magnetic field. Sensors monitoring the patient may utilize ECG, blood pressure, and other data to control the magnet, varying the magnetic field so as to emulate the pumping action and intensity of the patents heart in real time, or simulate same.
Owner:CIMEX BIOTECH L C

Inflatable blanket for use in cardiac surgery

A method of performing cardiac surgery on a patient's heart, including covering a patient with an inflatable blanket for a forced air convection system, the inflatable blanket having at least one separable seal line within the blanket. The separable seal line may be separated to form a slit. A patient's femoral artery is accessed through the slit, and an elongate medical instrument is passed through the slit, and through the femoral artery toward the patient's heart. Cardiac surgery is performed with the elongate medical instrument, and the elongate medical instrument is withdrawn from the femoral artery through the slit.
Owner:TYCO HEALTHCARE GRP LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products