Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

95 results about "Venous access" patented technology

Venous access is any kind of way to access the bloodstream through the veins, either to administer intravenous therapy (medication, fluid), parenteral nutrition, to obtain blood for analysis, or of blood-based treatments such as dialysis or apheresis. Central venous catheters (CVCs) may also be used to measure the central venous pressure.

Prosthetic Valve for Transluminal Delivery

InactiveUS20100004740A1Preventing substantial migrationEliminate the problemBalloon catheterHeart valvesVenous accessImplantation Site
A prosthetic valve assembly for use in replacing a deficient native valve comprises a replacement valve supported on an expandable valve support. If desired, one or more anchors may be used. The valve support, which entirely supports the valve annulus, valve leaflets, and valve commissure points, is configured to be collapsible for transluminal delivery and expandable to contact the anatomical annulus of the native valve when the assembly is properly positioned. Portions of the valve support may expand to a preset diameter to maintain coaptivity of the replacement valve and to prevent occlusion of the coronary ostia. A radial restraint, comprising a wire, thread or cuff, may be used to ensure expansion does not exceed the preset diameter. The valve support may optionally comprise a drug elution component. The anchor engages the lumen wall when expanded and prevents substantial migration of the valve assembly when positioned in place. The prosthetic valve assembly is compressible about a catheter, and restrained from expanding by an outer sheath. The catheter may be inserted inside a lumen within the body, such as the femoral artery, and delivered to a desired location, such as the heart. A blood pump may be inserted into the catheter to ensure continued blood flow across the implantation site during implantation procedure. When the outer sheath is retracted, the prosthetic valve assembly expands to an expanded position such that the valve and valve support expand at the implantation site and the anchor engages the lumen wall. Insertion of the catheter may optionally be performed over a transseptally delivered guidewire that has been externalized through the arterial vasculature. Such a guidewire provide dual venous and arterial access to the implantation site and allows additional manipulation of the implantation site after arterial implantation of the prosthetic valve. Additional expansion stents may be delivered by venous access to the valve.
Owner:MEDTRONIC COREVALVE

Safe intravenous infusion port injectors

We describe connectors for safely and conveniently injecting measured doses of sterile liquid medications into a patient via one or more infusion ports in intravenous access assemblies. Each connector comprises a tubular injector divided by a rigid septum which holds a hollow needle sharp on each end safely recessed in a leading and in a trailing chamber. The leading chamber snugly holds the trailing limb and penetrable cap of an inserted standard infusion port. The trailing recess snugly holds the leading end of a cartridge with a leading penetrable diaphragm, a bore containing liquid medication, a cartridge piston and trailing bore suitable for insertion of a separate cartridge plunger having markers for measuring doses delivered; or, alternatively, the pentrable cap and trailing limb of second similar infusion port attached by trailing tubing to a large measured volume infusion source. When assembled such that the trailing cap of infusion port is penetrated by the needle in the leading chamber and the leading diaphragm of the cartridge or, alternatively, the leading penetrable cap on a second infusion port is penetrated by the needle in the trailing chamber, such that flow can proceed through the needle, precisely measured doses of sterile liquid medication can be injected into the venous access assembly without possibilities for the user to touch, get stuck or finger-contaminate the needle or its contents. Unique features added to increase the efficiency of the system are a biased leading end on the tubular injector to conveniently and securely accommodate a Y-infusion port; an eccentric needle in the connector, such that rotation prevents the leading sharp end of the needle from passing through the infusion port cap via the same track; and an easily removed biased cap for keeping the cartridge diaphragm sterile.
Owner:WALKER JACK M +1

Squitieri hemodialysis and vascular access systems

A hemodialysis and vascular access system comprises a subcutaneous composite PTFE silastic arteriovenous fistula having an indwelling silastic venous end which is inserted percutaneously into a vein and a PTFE arterial end which is anastomosed to an artery. Access to a blood stream within the system is gained by direct puncture of needle(s) into a needle receiving site having a tubular passage within a metal or plastic frame and a silicone upper surface through which needle(s) are inserted. In an alternate embodiment of the invention, percutaneous access to a blood stream may be gained by placing needles directly into the system (i.e. into the PTFE arterial end). The invention also proposes an additional embodiment having an arterialized indwelling venous catheter where blood flows from an artery through a tube and a port into an arterial reservoir and is returned to a vein via a port and a venous outlet tube distinct and distant from the area where the blood from the artery enters the arterial reservoir. The site where blood is returned to the vein is not directly fixed to the venous wall but is free floating within the vein. This system provides a hemodialysis and venous access graft which has superior longevity and performance, is easier to implant and is much more user friendly.
Owner:HEMOSPHERE

Hemodialysis and vascular access system

InactiveUSRE44639E1Encourage self sealing and tissue ingrowthAvoid the needOther blood circulation devicesDiagnosticsVenous accessHaemodialysis machine
A hemodialysis and vascular access system comprises a subcutaneous composite PTFE silastic arteriovenous fistula having an indwelling silastic venous end which is inserted percutaneously into a vein and a PTFE arterial end which is anastomosed to an artery. Access to a blood stream within the system is gained by direct puncture of needle(s) into a needle receiving site having a tubular passage within a metal or plastic frame and a silicone upper surface through which needle(s) are inserted. In an alternate embodiment of the invention, percutaneous access to a blood stream may be gained by placing needles directly into the system (i.e. into the PTFE arterial end). The invention also proposes an additional embodiment having an arterialized indwelling venous catheter where blood flows from an artery through a tube and a port into an arterial reservoir and is returned to a vein via a port and a venous outlet tube distinct and distant from the area where the blood from the artery enters the arterial reservoir. The site where blood is returned to the vein is not directly fixed to the venous wall but is free floating within the vein. This system provides a hemodialysis and venous access graft which has superior longevity and performance, is easier to implant and is much more user friendly.
Owner:MERIT MEDICAL SYST INC

Implantable duct system connecting the intrahepatic portal vein to the femoral vein for establishing a subcutaneous porto-systemic shunt and simultaneously providing a durable access to the portal vein

InactiveUS20050020963A1Avoid blood leakageGuide needlesCannulasVenous accessPortal venous system
A set (FIG. 1&2) designed to provide a durable access to the portal vein and to divert portal blood to the systemic circulation in order to relieve congested portal system. The set is composed of a duct (1) and a shunt tube (7). The duct is composed of a covered flexible tubular braid with two opened ends. One end has flaring edges and forms the inner opening (2) while the other end is sealed to form a hub (3). To insert the duct into the intrahepatic portal vein through the percutaneous route the duct is mounted over a puncture needle (13) and contained in a small-constrained diameter by means of a peel-away sheath (16). After the position of the inner opening of the duct has been adjusted to the desired location the said sheath is peeled away to allow the duct to expand. The shunt tube (7) is composed of a long flexible vascular graft (8) equipped at its upper end with a head (9) while its lower end is free to be sutured with the femoral vein (21). The said head is cupped at the inner side (10) to fit in the hub (3) of the said duct (1), while back of the said head has a window covered with an elastic membrane (11). This shunt tube is applied in case both a portal access and a porto-systemic shunt are required. In case of only a durable portal access is needed, a plug (4) with a central window covered by an elastic membrane (6) is applied to the hub of the duct. This prevents bleeding from the duct and simultaneously allows entrance of needles, catheters, etc. to the duct and portal vein.
Owner:GABAL ABDELWAHAB M
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products