Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

870 results about "Anticoagulant" patented technology

Anticoagulants, commonly known as blood thinners, are chemical substances that prevent or reduce coagulation of blood, prolonging the clotting time. Some of them occur naturally in blood-eating animals such as leeches and mosquitoes, where they help keep the bite area unclotted long enough for the animal to obtain some blood. As a class of medications, anticoagulants are used in therapy for thrombotic disorders. Oral anticoagulants (OACs) are taken by many people in pill or tablet form, and various intravenous anticoagulant dosage forms are used in hospitals. Some anticoagulants are used in medical equipment, such as sample tubes, blood transfusion bags, and dialysis equipment. They can also be used as rodenticides.

Barrier device for ostium of left atrial appendage

A membrane applied to the ostium of an atrial appendage for blocking blood from entering the atrial appendage which can form blood clots therein is disclosed. The membrane also prevents blood clots in the atrial appendage from escaping therefrom and entering the blood stream which can result in a blocked blood vessel, leading to strokes and heart attacks. The membranes are percutaneously installed in patients experiencing atrial fibrillations and other heart conditions where thrombosis may form in the atrial appendages. A variety of means for securing the membranes in place are disclosed. The membranes may be held in place over the ostium of the atrial appendage or fill the inside of the atrial appendage. The means for holding the membranes in place over the ostium of the atrial appendages include prongs, stents, anchors with tethers or springs, disks with tethers or springs, umbrellas, spiral springs filling the atrial appendages, and adhesives. After the membrane is in place a filler substance may be added inside the atrial appendage to reduce the volume, help seal the membrane against the ostium or clot the blood in the atrial appendage. The membranes may have anticoagulants to help prevent thrombosis. The membranes be porous such that endothelial cells cover the membrane presenting a living membrane wall to prevent thrombosis. The membranes may have means to center the membranes over the ostium. Sensors may be attached to the membrane to provide information about the patient.
Owner:BOSTON SCI SCIMED INC

Barrier device for ostium of left atrial appendage

A membrane applied to the ostium of an atrial appendage for blocking blood from entering the atrial appendage which can form blood clots therein is disclosed. The membrane also prevents blood clots in the atrial appendage from escaping therefrom and entering the blood stream which can result in a blocked blood vessel, leading to strokes and heart attacks. The membranes are percutaneously installed in patients experiencing atrial fibrillations and other heart conditions where thrombosis may form in the atrial appendages. A variety of means for securing the membranes in place are disclosed. The membranes may be held in place over the ostium of the atrial appendage or fill the inside of the atrial appendage. The means for holding the membranes in place over the ostium of the atrial appendages include prongs, stents, anchors with tethers or springs, disks with tethers or springs, umbrellas, spiral springs filling the atrial appendages, and adhesives. After the membrane is in place a filler substance may be added inside the atrial appendage to reduce the volume, help seal the membrane against the ostium or clot the blood in the atrial appendage. The membranes may have anticoagulants to help prevent thrombosis. The membranes be porous such that endothelial cells cover the membrane presenting a living membrane wall to prevent thrombosis. The membranes may have means to center the membranes over the ostium. Sensors may be attached to the membrane to provide information about the patient.
Owner:BOSTON SCI SCIMED INC

Automated compulsory blood extraction system

InactiveUS6340354B1Cost-effectively mass producedPromote circulationIncision instrumentsWound drainsVeinHead size
A method and apparatus for the treatment of thrombosis, venous insufficiency, and the like, and in particular to an Automated Compulsory Blood Extraction System (ACBES) configured to provide an efficient and safe means for the measured extraction of blood utilizing a device providing, in effect, an artificial leech, but without the infection, control, care, and other limitations associated with the medicinal leech. The preferred embodiment of the present invention utilizes recent micro technological advances to provide a micro mechanical device which mimics and improves upon the bloodletting properties of the medicinal leech utilizing a micro mechanical valve, micropump, and micro sensor arraignment cooperating with a tertiary jaw array having teeth situated thereon. The preferred embodiment of the present invention contemplates an extraction device which may have a head size of one centimeter or less, and which may be utilized in number about the affected area of the patient to provide controlled, precision, pulsed blood extraction via vacuum induction, supplying a controlled dosage of anticoagulant, histamine anesthetic, or the like. Alternative embodiments of the present invention include an independent, single needle, stationary design configured primarily for emergency use, a multi-needle piston design, a large extraction area array design including concentric needles of adjustable depth, and a deep extraction needle design.
Owner:RAMBIN CHRISTOPHER L

Blood collection and separation system

A system for collecting and processing blood from a donor (70), wherein the system may be compact enough to be located entirely beside the donor's chair, and be able to process the blood while the donor is still resting in the chair after having donated the blood. Thus, the separated blood components (plasma and red blood cells) may be stored in their individual optimum environments immediately after the whole blood is drawn, and the blood does not need to be transported back to a separation laboratory for processing. The system includes a needle (72) (or other cannula-like device) for insertion into a vein of the donor and drawing whole blood therethrough, a variable-volume rotor (2a) for holding the blood after it is drawn, and a motor (50) for spinning the rotor so as to cause the blood to separate into components, for example, plasma and red blood cells. The system also provides for a container for collecting a separated component. In a preferred embodiment two containers are used: the first container (92) for containing an anticoagulant, which is preferably added to the whole blood as it is drawn from the donor, and then for storing the plasma after it has been separated from the red blood cells, and the second container (91) for storing the separated red blood cells. The system further includes tubing (73), which may have valving (81) built into it and which may be acted on externally, so as to direct the blood components in the desired manner.
Owner:HAEMONETICS

Vacuum blood collection tube and method thereof capable of directly separating blood plasma

The invention relates to the technical field of clinical medical instruments, in particular to a vacuum blood collection tube and a method thereof capable of directly separating blood plasma. The vacuum blood collection tube comprises a blood collection tube body, an inner tube, a rubber plug and a filter element. The vacuum blood collection tube is characterized in that the blood collection tube inner tube is arranged in the blood collection tube body, the rubber plug is disposed at the top of the blood collection tube body, the structure of the rubber plug is close to a plug shape, a semicircle groove is disposed at the center of the upper portion of the rubber plug structure, left and right ends of the lower portion of the rubber plug are embedded into the blood collection tube body to be connected with the blood collection tube inner tube, a blood plasma outlet is disposed in the middle of the bottom of the blood collection tube inner tube, a blood plasma collecting chamber is mounted below the blood plasma outlet, a filtering membrane is arranged on the upper portion of the blood plasma outlet of the blood collection tube inner tube, the filter element is arranged on the upper portion of the filtering membrane, a buffer plate is mounted on the filter element, consequently a blood collection chamber is formed in the blood collection tube inner tube, and a layer of anticoagulant is disposed on the inner wall of the blood collection tube inner tube. The vacuum blood collection tube and the method thereof capable of directly separating the blood plasma have the advantages that physical form differences of blood visible components and plasma components are utilized, the blood plasma can be rapidly separated, and the vacuum blood collection tube and the method thereof are simple, convenient, safe and rapid.
Owner:SHANGHAI KEHUADIAGNOSITIC MEDICAL PRODS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products