Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

314 results about "Synthetic diamond" patented technology

A synthetic diamond (also known as a laboratory-grown diamond, a cultured diamond, or a cultivated diamond) is a diamond produced by a controlled process, as contrasted with a natural diamond created by geological processes or an imitation diamond made of non-diamond material that appears similar to a diamond. Synthetic diamond is also widely known as HPHT diamond or CVD diamond, after the two common production methods (referring to the high-pressure high-temperature and chemical vapor deposition crystal formation methods, respectively). While the term synthetic may sometimes be associated by consumers with imitation products, synthetic diamonds are made of the same material as natural diamonds—pure carbon, crystallized in an isotropic 3D form. In the United States, the Federal Trade Commission has indicated that the terms laboratory-grown, laboratory-created, and [manufacturer-name]-created "would more clearly communicate the nature of the stone".

Thermally stable diamond polycrystalline diamond constructions

Thermally stable diamond constructions comprise a diamond body having a plurality of bonded diamond crystals and interstitial regions disposed among the crystals. A metallic substrate is attached to the body. The body includes a first region substantially free of a catalyst material that extends a partial depth from a surface into the body, and a second region that includes the catalyst material. The body can include natural diamond grains and / or a blend of natural and synthetic diamond grains, and is treated to form the first region. Before treatment, a portion of the body to be treated is finished to an approximate final dimension so that the depth of the first region of the finished product is substantially the same as when treated. During treatment, catalyst materials as well as non-catalyst metallic materials are removed from the diamond body to provide a further enhanced degree of thermal stability.
Owner:SMITH INT INC

Thermally stable diamond polycrystalline diamond constructions

Thermally stable diamond constructions comprise a diamond body having a plurality of bonded diamond crystals, a plurality of interstitial regions disposed among the crystals, and a substrate attached to the body. The body includes a working surface and a side surface extending away from the working surface to the substrate. The body comprises a first region adjacent the side surface that is substantially free of a catalyst material and that extends a partial depth into the diamond body. The first region can further extend to at least a portion of the working surface and a partial depth therefrom into the diamond body. The diamond body can be formed from natural diamond grains and / or a mixture of natural and synthetic diamond grains. A surface of the diamond body is treated to provide the first region, and before treatment is finished to an approximate final dimension.
Owner:SMITH INT INC

Single crystal CVD synthetic diamond material

A single crystal CVD synthetic diamond material comprising: a total as-grown nitrogen concentration equal to or greater than 5 ppm, and a uniform distribution of defects, wherein said uniform distribution of defects is defined by one or more of the following characteristics: (i) the total nitrogen concentration, when mapped by secondary ion mass spectrometry (SIMS) over an area equal to or greater than 50×50 μm using an analysis area of 10 μm or less, possesses a point-to-point variation of less than 30% of an average total nitrogen concentration value, or when mapped by SIMS over an area equal to or greater than 200×200 μm using an analysis area of 60 μm or less, possesses a point-to-point variation of less than 30% of an average total nitrogen concentration value; (ii) an as-grown nitrogen-vacancy defect (NV) concentration equal to or greater than 50 ppb as measured using 77K UV-visible absorption measurements, wherein the nitrogen-vacancy defects are uniformly distributed through the synthetic single crystal CVD diamond material such that, when excited using a 514 nm laser excitation source of spot size equal to or less than 10 μm at room temperature using a 50 mW 46 continuous wave laser, and mapped over an area equal to or greater than 50×50 μm with a data interval less than 10 μm there is a low point-to-point variation wherein the intensity area ratio of nitrogen vacancy photoluminescence peaks between regions of high photoluminescent intensity and regions of low photolominescent intensity is <2× for either the 575 nm photoluminescent peak (NV0) or the 637 nm photoluminescent peak (NV); (iii) a variation in Raman intensity such that, when excited using a 514 nm laser excitation source (resulting in a Raman peak at 552.4 nm) of spot size equal to or less than 10 μm at room temperature using a 50 mW continuous wave laser, and mapped over an area equal to or greater than 50×50 μm with a data interval less than 10 μm, there is a low point-to-point variation wherein the ratio of Raman peak areas between regions of low Raman intensity and high Raman intensity is <1.25×; (iv) an as-grown nitrogen-vacancy defect (NV) concentration equal to or greater than 50 ppb as measured using 77K UV-visible absorption measurements, wherein, when excited using a 514 nm excitation source of spot size equal to or less than 10 μm at 77K using a 50 mW continuous wave laser, gives an intensity at 575 nm corresponding to NV0 greater than 120 times a Raman intensity at 552.4 nm, and / or an intensity at 637 nm corresponding to NV− greater than 200 times the Raman intensity at 552.4 nm; (v) a single substitutional nitrogen defect (Ns) concentration equal to or greater than 5 ppm, wherein the single substitutional nitrogen defects are uniformly distributed through the synthetic single crystal CVD diamond material such that by using a 1344 cm−1 infrared absorption feature and sampling an area greater than an area of 0.5 mm2, the variation is lower than 80%, as deduced by dividing the standard deviation by the mean value; (vi) a variation in red luminescence intensity, as defined by a standard deviation divided by a mean value, is less than 15%; (vii) a mean standard deviation in neutral single substitutional nitrogen concentration of less than 80%; and (viii) a colour intensity as measured using a histogram from a microscopy image with a mean gray value of greater than 50, wherein the colour intensity is uniform through the single crystal CVD synthetic diamond material such that the variation in gray colour, as characterised by the gray value standard deviation divided by the gray value mean, is less than 40%.
Owner:ELEMENT SIX LTD

Synthetic diamond materials for quantum and optical applications and methods of making the same

A synthetic diamond material comprising one or more spin defects having a full width half maximum intrinsic inhomogeneous zero phonon line width of no more than 100 MHz. The method for obtain such a material involves a multi-stage annealing process.
Owner:PRESIDENT & FELLOWS OF HARVARD COLLEGE

System and high pressure, high temperature apparatus for producing synthetic diamonds

An apparatus for growing a synthetic diamond comprises a growth chamber, at least one manifold allowing access to the growth chamber, and a plurality of safety clamps positioned on opposite sides of the growth chamber; wherein the growth chamber and the plurality of safety clamps are comprised of a material having a tensile strength of about 120,000-200,000 psi, a yield strength of about 100,000-160,000 psi, an elongation of about 10-20%, an area reduction of about 40-50%, an impact strength of about 30-40 ft-lbs, and a hardness greater than 320 BHN.
Owner:THE GEMESIS CORP

Composite wafers having bulk-quality semiconductor layers and method of manufacturing thereof

Method for producing composite wafers with thin high-quality semiconductor films atomically attached to synthetic diamond wafers is disclosed. Synthetic diamond substrates are created by depositing synthetic diamond onto a nucleating layer deposited on bulk semiconductor wafer which has been prepared to allow separation of the thin semiconductor film from the remaining bulk semiconductor wafer. The remaining semiconductor wafer is available for reuse. The synthetic diamond substrate serves as heat spreader and a mechanical substrate.
Owner:GROUP4 LABS +1

Method of Repairing Diamond Rock Bit

Hardfacing is applied on the gage surface of bit blades, the leading and trailing edges of bit blades, and on carbide inserts. The gage surface contains natural diamonds, synthetic diamonds, thermal stable polycrystalline (TSP) diamonds and carbide inserts, and the hardfacing is applied over at least a portion of them. As the primary cutters on the bit blades are worn down during drilling, the gage surface of the bit is also worn down. A hardfacing is applied to the worn gage surfaces of the bit, thereby allowing the bit to drill deeper and longer without requiring replacement.
Owner:BAKER HUGHES INC

Superabrasive particle synthesis with controlled placement of crystalline seeds

An improved method for synthesizing superabrasive particles provides high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method can include forming a growth precursor of a substantially homogeneous mixture of raw material and catalyst material or layers of raw material and metal catalyst. The growth precursor can have a layer of adhesive over at least a portion thereof. A plurality of crystalline seeds can be placed in a predetermined pattern on the layer of adhesive. The growth precursor can be maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. Advantageously, the patterned placement of crystalline seeds and disclosed processes allow for production of various morphologies of synthetic diamonds, including octahedral and cubic diamonds, and improved growth conditions generally. As a result, the grown superabrasive particles typically have a high yield of high quality particles and a narrow distribution of particle sizes.
Owner:SUNG CHIEN MIN

Superabrasive particle synthesis with controlled placement of crystalline seeds

An improved method for synthesizing superabrasive particles provides high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method includes forming a substantially homogeneous mixture of raw material and catalyst material or layers of raw material and metal catalyst. A plurality of crystalline seeds is placed in a predetermined pattern in the mixture or one of the layers to form a growth precursor. The growth precursor is maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. Advantageously, the patterned placement of crystalline seeds and disclosed processes allow for production of various morphologies of synthetic diamonds, including octahedral and cubic diamonds, and improved growth conditions generally. As a result, the grown superabrasive particles typically have a high yield of high quality particles and a narrow distribution of particle sizes.
Owner:SUNG CHIEN MIN

Grown diamond mosaic separation

The present invention provides in one example embodiment a synthetic diamond and a method of growing such a diamond on a plurality of seed diamonds, implanting the grown diamond with ions, and separating the grown diamond from the plurality of seed diamonds.
Owner:SCIO DIAMOND TECHNOLOGY CORPORATION

Technical method for electrorefining diamond

This invention relates to a method for purifying diamond by electrolysis. The method comprises: immersing diamond synthesized by powder method into the electrolyte in an electrolytic tank as the anode, electrolyzing, precipitating metals in the synthetic diamond onto the cathode plate under current action, and removing graphite by washing with water to obtain high-purity diamond. The method utilizes electricity power as a substitute for H2SO4 and HNO3 thus can effectively eliminate environmental pollution during the purification process, and the operation is safe and reliable. Metals in the synthetic diamond can be recovered, and the recovery rate is 80-90%.
Owner:ZHONGNAN DIAMOND CO LTD

Thick polycrystalline synthetic diamond wafers for heat spreading applications and microwave plasma chemical vapour depositon synthesis techniques

A method of fabricating a polycrystalline CVD synthetic diamond material having an average thermal conductivity at room temperature through a thickness of the polycrystalline CVD synthetic diamond material of at least 2000 Wm−1K−1, the method comprising: loading a refractory metal substrate into a CVD reactor; locating a refractory metal guard ring around a peripheral region of the refractory metal substrate, the refractory metal guard ring defining a gap between an edge of the refractory metal substrate and the refractory metal guard ring having a width 1.5 mm to 5.0 mm; introducing microwaves into the CVD reactor at a power such that the power density in terms of power per unit area of the refractory metal substrate is in a range 2.5 to 4.5 W mm−2; introducing process gas into the CVD reactor wherein the process gas within the CVD reactor comprises a nitrogen concentration in a range 600 ppb to 1500 ppb calculated as molecular nitrogen N2, a carbon containing gas concentration in a range 0.5% to 3.0% by volume, and a hydrogen concentration in a range 92% to 98.5% by volume; controlling an average temperature of the refractory metal substrate to lie in a range 750° C. to 950° C. and to maintain a temperature difference between an edge and a centre point on the refractory metal substrate of no more than 80° C. growing polycrystalline CVD synthetic diamond material to a thickness of at least 1.3 mm on the refractory metal substrate; and cooling the polycrystalline CVD synthetic diamond material to yield a polycrystalline CVD synthetic diamond material having a thickness of at least 1.3 mm, an average thermal conductivity at room temperature through the thickness of the polycrystalline CVD synthetic diamond material of at least 2000 Wm−1K−1 over at least a central area of the polycrystalline CVD synthetic diamond material, wherein the central area is at least 70% of a total area of the polycrystalline CVD synthetic diamond material, a single substitutional nitrogen concentration no more than 0.80 ppm over at least the central area of the polycrystalline CVD synthetic diamond material, and wherein the polycrystalline CVD synthetic diamond material is substantially crack free over at least the central area thereof such that the central area has no cracks which intersect both external major faces of the polycrystalline CVD synthetic diamond material and extend greater than 2 mm in length.
Owner:ELEMENT SIX TECH LTD

Shaped thermally stable polycrystalline material and associated methods of manufacture

InactiveUS20060272571A1Tailored strengthGood self-cutting behaviorPigmenting treatmentPolycrystalline material growthPolycrystalline diamondThermal stability
A new industrial thermally stable polycrystalline diamond (TSP) is disclosed and described as a replacement of natural as well as synthetic diamond grit in concrete cutting, grinding, polishing, and surface-set grinding or core bit drilling applications. Conventional diamond is too strong and brittle for self-sharpening and polishing and has a lower thermal stability inferior to the industrial standard for high temperature tool segment bonding. TSP grits can be tailor-made having unique properties as well as an engineered shape of grits over naturally or synthetically produced diamond grits. The TSP grits have a high thermal stability of up to 1200° C. and are self-sharpening. Further, economical production of coarse TSP grit size up to 1-2 mm from 50 / 60 mesh size in almost any preferred shape such as blocky, round, hexagonal, thin elongated, spherical, needle like, and any desirable tailor-made shaped etc can be realized. The use of a partition member during production of the TSP grits allows for the effective manufacturing of desired shaped grits as compared to laborious and ineffective low yield crushing of TSP material. Advantageously, the process time can also be exceptionally shorter than conventional HPHT processes.
Owner:ADICO ASIA POLYDIAMOND

Grinding wheel for roll grinding application and method of roll grinding thereof

Iron and steel rolls are ground to production quality requirements with a grinding wheel that requires minimal wheel wear compensation, profile error compensation or taper error compensation during the grinding process. The grinding wheel consists essentially of a superabrasive material selected from the group of natural diamond, synthetic diamond, cubic boron nitride, and mixtures thereof, in a bond system, for a grinding wheel with extended wheel life, and which removes minimum amount of stock off the roll to achieve desired roll geometry.
Owner:DIAMOND INNOVATIONS INC

Synthetic diamond having alternating layers with different concentrations of impurities

Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and / or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described., as well as a system for use in performing such a method, and articles incorporating such a composition.
Owner:SCIO DIAMOND TECHNOLOGY CORPORATION

Method of creating a synthetic diamond

Synthetic monocrystalline diamond compositions having one or more monocrystalline diamond layers formed by chemical vapor deposition, the layers including one or more layers having an increased concentration of one or more impurities (such as boron and / or isotopes of carbon), as compared to other layers or comparable layers without such impurities. Such compositions provide an improved combination of properties, including color, strength, velocity of sound, electrical conductivity, and control of defects. A related method for preparing such a composition is also described, as well as a system for use in performing such a method, and articles incorporating such a composition.
Owner:SCIO DIAMOND TECHNOLOGY CORPORATION

Method for producing artificial powder graphite

The invention relates to a method for obtaining artificial graphite powder for electrical engineering, manufacturing synthetic diamonds and in other fields of technology with especially high requirements for graphite purity. The novelty of the inventive method is the use of pyrolytic carbon material obtained by methane pyrolysis at a temperature of 2100-2400° C. Pyrolytic carbon obtained as a waste product of pyrolytic anisotropic material can be used as a carbon material. The method includes grinding carbon material and its graphitizing at a temperature of 2600° C.-2700° C. The inventive method simplifies the process of preparing artificial graphite powder and enhances the degree of graphitization, which improves the quality of the final product.
Owner:BILENKO LEONID DMITRIEVICH

Rotating dry drilling bit

A rotating dry drilling bit for low thrust drilling of an annular bore hole into a body of rock and obtaining an extremely small diameter core sample comprises a bit crown moulded to the end of an annular steel body. The bit crown comprises a plurality of radially extending channels and a plurality of evenly spaced radially extending cutting blades surrounding an annulus. The bit crown is a hard metal matrix formed onto the bottom end of the annular steel body using a powdered metallurgy process. Embedded within each cutting blade are natural and synthetic diamonds. A reverse auger mechanism within the annulus removes cuttings from the annulus and the surface of the bit crown.
Owner:NORTHERN CENT FOR ADVANCED TECH

Synthetic diamond coated compound semiconductor substrates

A method of fabricating a synthetic diamond coated compound semiconductor substrate, the method comprising: loading a composite substrate into a chemical vapour deposition (CVD) reactor, the composite substrate comprising a single crystal carrier wafer, a layer of single crystal compound semiconductor epitaxially grown on the carrier wafer, and an interface layer disposed on the layer of compound semiconductor, the interface layer forming a growth surface suitable for growth of synthetic diamond material thereon via a CVD technique; and growing a layer of CVD diamond material on the growth surface of the interface layer, wherein during growth of CVD diamond material a temperature difference at the growth surface between an edge and a centre point thereof is maintained to be no more than 80° C., and wherein the carrier wafer has an aspect ratio, defined by a ratio of thickness to width, of no less than 0.25 / 100.
Owner:AKASH SYST INC

Diamond structure separation

The present invention provides a method and composition used for separating a synthetic diamond from its substrate, involving the use of ion implantation to implant ions / atoms within a diamond substrate, followed by growth of synthetic diamond on the implanted surface, and finally separation of the grown diamond, together with a portion of the implanted substrate surface, by heating in a non-oxidizing environment. The resulting composite structure can be used as is, or can be further processed, as by removing the substrate portion from the grown diamond.
Owner:SCIO DIAMOND TECHNOLOGY CORPORATION

Memory gemstones

InactiveUS20080282733A1Waste based fuelJewelleryAcetic acidAcetogenesis
Animal or human tissue is digested to extract carbon-containing gases. The digestion process can include hydrolysis, acidogenesis, acetogenesis, and methanogenesis. The step of denitrification can be added if too much nitrogen is produced during digestion. Digestion can also include enzymes that break down the tissue in preparation for methanogenesis. The carbon-containing gas can be added onto or be incorporated throughout a natural or synthetic diamond or other gemstone. The carbon-containing gas can be added during hydrothermal synthesis to create a gemstone with the carbon-containing gas incorporated throughout.
Owner:BLUE MOON GEM

A Rigid Composite Structure with a Superhard Interior Surface

A rigid composite structure has a first bore formed in a metallic material and a second bore formed by a super hard interior segment or segments disposed within the first bore. Each segment may be lined adjacent to one another and held under compression within the first bore. The segments may be made of super hard materials such as natural diamond, synthetic diamond, polycrystalline diamond, single crystalline diamond, cubic boron nitrate or other superhard composite materials which exhibit low thermal expansion rates and are generally chemically inert. The resultant rigid composite structure may possess higher tolerances to high pressures and high temperatures within the second bore.
Owner:NOVATEK IP +1

Superabrasive particle synthesis with growth control

An improved method for synthesizing superabrasive particles provides high quality industrial superabrasive particles with high yield and a narrow size distribution. The synthesis method can include forming a growth precursor of a substantially homogeneous mixture of raw material and catalyst material or layers of raw material and metal catalyst. The growth precursor can have a layer of adhesive over at least a portion thereof. A plurality of crystalline seeds can be placed in a predetermined pattern on the layer of adhesive. The growth precursor can be maintained at a temperature and pressure at which the superabrasive crystal is thermodynamically stable for a time sufficient for a desired degree of growth. Advantageously, the patterned placement of crystalline seeds and disclosed processes allow for production of various morphologies of synthetic diamonds, including octahedral and cubic diamonds, and improved growth conditions generally. As a result, the grown superabrasive particles typically have a high yield of high quality particles and a narrow distribution of particle sizes.
Owner:SUNG CHIEN MIN

High crystalline quality synthetic diamond

The invention relates to a single crystal CVD diamond material, wherein the extended defect density as characterised by X-ray topography is less than 400 / cm2 over an area of greater than 0.014 cm2. The invention further relates to a method for producing a CVD single crystal diamond material according to any preceding claim comprising the step of selecting a substrate on which to grow the CVD single crystal diamond, wherein the substrate has at least one of a density of extended defects as characterised by X-ray topography of less than 400 / cm2 over an area greater than 0.014 cm2; an optical isotropy of less than 1x10-5 over a volume greater than 0.1 mm3; and a FWHM X-ray rocking curve width for the (004) reflection of less than 20 arc seconds.
Owner:EHLEMENT SIKS TECHZ PTI

Gallium-nitride-on-diamond wafers and manufacturing equipment and methods of manufacture

A method for integrating wide-gap semiconductors, and specifically, gallium nitride epilayers, with synthetic diamond substrates is disclosed. Diamond substrates are created by depositing synthetic diamond onto a nucleating layer deposited or formed on a layered structure that comprises at least one layer of gallium nitride. Methods for manufacturing GaN-on-diamond wafers with low bow and high crystalline quality are disclosed along with preferred choices for manufacturing GaN-on-diamond wafers and chips tailored to specific applications.
Owner:AKASH SYST INC

Controlling doping of synthetic diamond material

A method of manufacturing synthetic CVD diamond material, the method comprising: providing a microwave plasma reactor comprising: a plasma chamber; one or more substrates disposed in the plasma chamber providing a growth surface area over which the synthetic CVD diamond material is to be deposited in use; a microwave coupling configuration for feeding microwaves from a microwave generator into the plasma chamber; and a gas flow system for feeding process gases into the plasma chamber and removing them therefrom, injecting process gases into the plasma chamber; feeding microwaves from the microwave generator into the plasma chamber through the microwave coupling configuration to form a plasma above the growth surface area; and growing synthetic CVD diamond material over the growth surface area, wherein the process gases comprise at least one dopant in gaseous form, selected from a one or more of boron, silicon, sulphur, phosphorous, lithium and beryllium at a concentration equal to or greater than 0.01 ppm and / or nitrogen at a concentration equal to or greater than 0.3 ppm, wherein the gas flow system includes a gas inlet comprising one or more gas inlet nozzles disposed opposite the growth surface area and configured to inject process gases towards the growth surface area, and wherein the process gases are injected towards the growth surface area at a total gas flow rate equal to or greater than 500 standard cm3 per minute and / or wherein the process gases are injected into the plasma chamber through the or each gas inlet nozzle with a Reynolds number a Reynolds number in a range 1 to 100.
Owner:ELEMENT SIX LTD

A microwave plasma reactor for manufacturing synthetic diamond material

A microwave plasma reactor for manufacturing synthetic diamond material via chemical vapour deposition, the microwave plasma reactor comprising: a plasma chamber defining a resonant cavity for supporting a primary microwave resonance mode having a primary microwave resonance mode frequency f; a plurality of microwave sources coupled to the plasma chamber for generating and feeding microwaves having a total microwave power Pτ into the plasma chamber; a gas flow system for feeding process gases into the plasma chamber and removing them therefrom; and a substrate holder disposed in the plasma chamber and comprising a supporting surface for supporting a substrate on which the synthetic diamond material is to be deposited in use, wherein the plurality of microwave sources are configured to couple at least 30% of the total microwave power Pτ into the plasma chamber in the primary microwave resonance mode frequency f, and wherein at least some of the plurality of microwave sources are solid state microwave sources.
Owner:ELEMENT SIX TECH LTD

Method of encapsulating material from humans or animals in a natural gemstone and its product

A method of creating a diamond includes the steps of creating entry points and internal passages in a natural or synthetic diamond, infiltrating a mixture comprising ashes produced from living human and animal parts or deceased human or animal parts into the diamond, and crystallizing the mixture. The diamond may then be repolished or refacetted. The invention also includes diamonds having discrete internal portions comprising ashes made from living human and animal parts, which internal portion are substantially transparent and which have an index refraction substantially matching that of the diamond.
Owner:1061803 ALBERTA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products