Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

45results about How to "Change in potential" patented technology

Semiconductor memory device comprising a plurality of static memory cells

ActiveUS20080037358A1Simple circuit structureStable writing and reading of dataDigital storageHemt circuitsLine driver
A driver power supply circuit stepping down a power supply voltage is arranged at a power supply node of a word line driver. The driver power supply circuit includes a non-silicide resistance element of N+ doped polycrystalline silicon, and a pull-down circuit lowering a voltage level of the driver power supply node. The pull-down circuit includes a pull-down transistor having the same threshold voltage characteristics as a memory cell transistor pulling down a voltage level of the driver power supply node, and a gate control circuit adjusting at least a gate voltage of the pull-down transistor. The gate control circuit corrects the gate potential of the pull-down transistor in a manner linked to variations in threshold voltage of the memory cell transistor.
Owner:RENESAS ELECTRONICS CORP

Circuit and method for driving a capacitive load, and display device provided with a circuit for driving a capacitive load

A video signal line driving circuit includes, for each output terminal TSj, a unit precharge circuit made of a capacitor Cpr and switches SWA1, SWA2, SWB1 and SWB2 for connecting the capacitor Cpr in parallel to a capacitive load of a liquid crystal panel. An OFF period in which first and second output buffers are electrically disconnected from the video signal line is provided between a P period in which a positive voltage is to be applied from the first output buffer in the video signal line driving circuit to the video signal lines (capacitive load) and an N period in which a negative voltage is to be applied from the second output buffer. A first and a second precharge period are set within this OFF period. In the first precharge period, the capacitor Cpr is connected in parallel to the capacitive load of the liquid crystal panel, and in the second precharge period, the capacitor Cpr is connected in parallel to the capacitive load with an orientation that is opposite to the orientation in the first precharge period.
Owner:SHARP KK

EL display device providing means for delivery of blanking signals to pixel elements

An EL display device 1 includes a display portion 2 having unit pixels 10 arranged in a matrix, a source line driver circuit 6, and a gate line driver circuit 4. Each of the unit pixels 10 has an EL element 11, a switching transistor Tr1, a driver transistor Tr2, and an auxiliary capacitor 13. The auxiliary capacitor 13 has electrodes, one connected to a gate electrode of the transistor Tr2 and the other to a next gate line GL. The gate line driver circuit 4 outputs, via the next gate line GL, blanking signals for forcibly stopping a light-emitting state of the EL elements 11, within hold times in which the voltages written to the gate electrodes of the transistors Tr2 are held. With such a configuration, a blanking period where the EL elements do not emit light, is inserted in one frame.
Owner:JOLED INC

Electro-optical device and electronic apparatus including the same

An electro-optical device includes a pixel circuit with a driving transistor element, a storage capacitor, and a capacitive element. The driving transistor element is electrically connected to a corresponding data line and a corresponding driving electrode. The storage capacitor is electrically connected to the driving transistor element and the driving electrode. The storage capacitor holds an image signal supplied through the corresponding data line as potential at the driving electrode. The capacitive element is electrically connected to the driving transistor element and the driving electrode. The capacitive element compensates for a change in the potential of the driving electrode when the driving transistor element is switched from a selection state to a non-selection state. The capacitive element is supplied with a correction signal that defines timing at which the potential of the capacitive element is controlled.
Owner:JAPAN DISPLAY WEST

Display system including functional layers and electronic device having same

The invention provides a display system for displaying images and an electronic device equipped with the display system. The display system can include a first electrode region in which first electrodes connected to switching elements are arranged on a substrate in a matrix, and light-emitting power-supply lines that are arranged around the first electrode region and are connected to the first electrodes. Functinal layers are formed over the first electrodes, and a second electrode is formed at least over the functional layers. Each light-emitting power-supply line and the second electrode have a first capacitor therebetween.
Owner:BOE TECH GRP CO LTD

Display device, display module, and electronic device

To provide a display device with a novel structure that can achieve both thickness reduction and favorable display quality. In a structure of a display device including a liquid crystal layer between a pixel electrode and a counter electrode, a common electrode and an electrode of a capacitor in a touch sensor on the counter electrode side are formed integrally and supplied with a pulse signal. On the element substrate side, a signal to be supplied to a capacitor line that forms a capacitance with the pixel electrode is in conjunction with the pulse signal so as to cancel a change in an electric field applied to the liquid crystal layer. Such a structure can achieve a display device with a touch sensor function that can cancel a change in an electric field applied to a liquid crystal layer even when the electric field is changed by a pulse signal.
Owner:SEMICON ENERGY LAB CO LTD

Level conversion circuit and serial/parallel conversion circuit with level conversion function

A MOS capacitor receiving a clock signal complementary to a sampling clock signal is provided at an input of a clocked inverter that is activated after sampling an input signal to perform level conversion. A charge pump operation of the MOS capacitor is performed in parallel with the activation of the clocked inverter. The power consumption of and the area occupied by a level conversion circuit converting a voltage amplitude of the input signal are reduced without deteriorating a high-speed operating characteristics.
Owner:MITSUBISHI ELECTRIC CORP

Pixel circuit and display device

A pixel circuit includes: a light emitting element; an n-channel drive transistor T1 that has a source connected with an anode of the light emitting element, a gate connected with a pixel node, and controls a light emission current flowing in the light emitting element in accordance with a light emission control voltage between the gate and the source; a transfer transistor T2 which is interposed between a data signal line and the pixel node, and has a gate connected with a scan signal line; a control transistor T3 which is interposed between the source and a drain of the drive transistor T1, has a gate connected with the scan signal line, and comes into an ON state simultaneously with the transfer transistor T2; and a capacitance element which is interposed between the gate and the source of the drive transistor T1, and holds the light emission control voltage.
Owner:SHARP KK

Display device, display method for same, and liquid crystal display device

When an idle period is started, a voltage of the control signal is changed from a value H to a value L. As a result, the analog amplifiers provided in the signal line driver circuit are switched from the normal state to the low-driving power state. At this time, the data signal lines are set to have a constant potential. A gate voltage is changed from Vgh to Vgl at the same time as when the control signal was changed from the value H to the value L. As a result, the gate of each TFT returns to the OFF state from the ON state. The control signal remains at the value L until the idle period is over. In other words, when the next driving period is started, the voltage of the control signal is changed from the value L to the value H. As a result, the analog amplifiers in the signal line driver circuit are switched back to the normal state from the low-driving power state.
Owner:SHARP KK

Level conversion circuit and serial/parallel conversion circuit with level conversion function

A MOS capacitor receiving a clock signal complementary to a sampling clock signal is provided at an input of a clocked inverter that is activated after sampling an input signal to perform level conversion. A charge pump operation of the MOS capacitor is performed in parallel with the activation of the clocked inverter. The power consumption of and the area occupied by a level conversion circuit converting a voltage amplitude of the input signal are reduced without deteriorating a high-speed operating characteristics.
Owner:MITSUBISHI ELECTRIC CORP

Semiconductor device

A semiconductor device according to an embodiment of the invention includes: a plurality of field effect transistors; and a plurality of logic circuits composed of the field effect transistors, the field effect transistors each including: first and second drain regions formed away from each other; at least one source region formed between the first and second drain regions; and a plurality of gate electrodes formed between the first drain region and the source region and between the second drain region and the source region.
Owner:RENESAS ELECTRONICS CORP

Display device and method of driving the same

Switching TFTs are controlled to a conducting state and a switching TFT to a non-conducting state, to provide a potential according to a threshold voltage to a gate terminal of a driving TFT. Then, in at least one embodiment, with the TFT maintaining the conducting state, a potential of a data line Sj is changed from a reference potential Vpc to a data potential Vdata to place the TFT in a conducting state. At this time, a current Ia flows and thus the gate terminal potential of the TFT rises. The higher the mobility of the TFT, the larger the amount of change in gate terminal potential and the smaller the current flowing through an organic EL element upon light emission. By this, a current that is not affected by variations in the threshold voltage of the TFT nor by variations in the mobility of the TFT flows through the organic EL element. Thus, in a current-driven type display device, variations in both the threshold voltage and mobility of a drive element are compensated for.
Owner:SHARP KK

Method for driving active matrix type liquid crystal display

In an active matrix type liquid crystal display, during a non-display period such as the horizontal blanking interval or the vertical blanking interval wherein no pixel TFT (10) is selected, the voltage of the opposing electrode is changed so that the power consumption is reduced with application of sufficient voltage to the liquid crystal and without increasing the amplitude of the display data. Also, a change alleviating voltage VM is applied during the change in the opposing electrode voltage to data lines (22) for supplying display data to each of pixel TFTs during the display period, in order to prevent changes in the potential of the data lines (22) caused by the change in the opposing electrode voltage and large reverse bias from being loaded to switches Hsw for outputting display data to the data lines (22).
Owner:SANYO ELECTRIC CO LTD

Display device and display method

When there are a plurality of rows with the same display content, a scanning order calculating portion (23) provided in a display control circuit (200) determines addresses sequentially such that scanning signal lines corresponding to the rows are selected at the same time. A scanning order setting portion (24) controls an address output portion (26) such that the scanning signal lines are selected in such an order, and also controls digital image signals DV outputted by output frame memory (22). In this case, the number of changes in potential for video signal lines can be reduced by the number of rows selected at the same time, resulting in reduced power consumption for driving the video signal lines.
Owner:SHARP KK

Semiconductor device

ActiveUS20060044866A1Reduce wasteful power consumptionReduce consumptionDigital storagePotential changeDevice material
The invention provides a semiconductor device capable of reducing wasteful power consumption. The semiconductor device of the invention does not require a refresh operation, and includes memory circuits for storing data, arranged in a matrix form, first signal lines for reading data from the memory circuits, second signal lines for transferring a signal that controls connection between the memory circuits and the first signal lines, a sense amplifier circuit for reading and determining data by detecting a potential change or a current change in the first signal lines, and a mitigating means for mitigating the potential change or the current change in the first signal lines during a period in which the sense amplifier circuit is being activated.
Owner:RENESAS ELECTRONICS CORP

Power supply apparatus and electronic device having the power supply apparatus

A power supply to improve an EMI characteristic and an electronic device having the power supply. The power supply includes a power converter to convert an alternating current (AC) power applied from outside to a direct current (DC) power, a ground portion to supply a ground power to the power converter and a noise attenuator to reduce noise by blocking a harmonic current generated by a driving of the power converter from passing through the ground portion. Accordingly, the stable ground power can be supplied to the internal elements by avoiding the potential change of the ground power and the noise caused by the flow of the harmonic current can be reduced by shortening the harmonic current path. Therefore, the EMI characteristic can be improved.
Owner:HEWLETT PACKARD DEV CO LP

Regulator Circuit and RFID Tag Including the Same

One object of the present invention is to provide a regulator circuit with an improved noise margin. In a regulator circuit including a bias circuit generating a reference voltage on the basis of the potential difference between a first power supply terminal and a second power supply terminal, and a voltage regulator outputting a potential to an output terminal on the basis of a reference potential input from the bias circuit, a bypass capacitor is provided between a power supply terminal and a node to which a gate of a transistor included in the bias circuit is connected.
Owner:SEMICON ENERGY LAB CO LTD

Electro-optical device, electronic apparatus, and method of driving electro-optical device

A second data transfer line that is coupled to a gate layer of a drive transistor is formed in a layer higher than the gate layer, and a transfer capacitor is formed in a layer higher than a layer having the second data transfer line. A first data transfer line to which a data signal is supplied is formed in a layer higher than a layer having the transfer capacitor.
Owner:SEIKO EPSON CORP

Solid-state image sensing device and image sensing device

A solid-state image sensing device includes: a pixel array in which pixels performing photoelectric conversion are arranged in rows and columns; and a column amplification section in which an image signal output from each pixel is amplified. The column amplification section includes amplifiers each of which is provided for each column, and the column amplification section is connected to a power supply voltage feed section and the ground. An impedance on the power supply side of the amplifier is greater than an impedance on the ground side.
Owner:PANASONIC SEMICON SOLUTIONS CO LTD

Display device and method of driving the same

Switching TFTs are controlled to a conducting state and a switching TFT to a non-conducting state, to provide a potential according to a threshold voltage to a gate terminal of a driving TFT. Then, in at least one embodiment, with the TFT maintaining the conducting state, a potential of a data line Sj is changed from a reference potential Vpc to a data potential Vdata to place the TFT in a conducting state. At this time, a current Ia flows and thus the gate terminal potential of the TFT rises. The higher the mobility of the TFT, the larger the amount of change in gate terminal potential and the smaller the current flowing through an organic EL element upon light emission. By this, a current that is not affected by variations in the threshold voltage of the TFT nor by variations in the mobility of the TFT flows through the organic EL element. Thus, in a current-driven type display device, variations in both the threshold voltage and mobility of a drive element are compensated for.
Owner:SHARP KK
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products