Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

362results about How to "Large capacitance" patented technology

Electro-optical device and electronic equipment

An active matrix driven electro-optical device, such as a liquid crystal device, is provided which is able to add sufficient storage capacitance to pixel electrodes and to decrease the diameter of contact holes connecting with pixel electrodes, even when a fine pixel pitch is employed. The liquid crystal device has TFTs, data lines, scanning lines, storage capacitor lines, and pixel electrodes provided on a TFT array substrate. Each of the pixel electrodes is electrically connected to one of the TFTs by two contact holes through a barrier layer. A part of a semiconductor layer and each of the capacitor lines sandwich a first dielectric film and constitute a first storage capacitor, while a part of the barrier layer and each of the capacitor lines sandwich a second dielectric film and constitute a second storage capacitor.
Owner:138 EAST LCD ADVANCEMENTS LTD

Semiconductor integrated circuit device having improved punch-through resistance and production method thereof, semiconductor integrated circuit device including a low-voltage transistor and a high-voltage transistor

An integrated circuit device comprises a memory cell well formed with a flash memory device, first and second well of opposite conductivity types for formation of high voltage transistors, and third and fourth wells of opposite conductivity types for low voltage transistors, wherein at least one of the fist and second wells and at least one of the third and fourth wells have an impurity distribution profile steeper than the memory cell well.
Owner:FUJITSU SEMICON LTD

Optical plasmon-wave structures

Optical plasmon-wave attenuator and modulator structures for controlling the amount of coupling between an guided optical signal and a surface plasmon wave. Optical power coupled to the plasmon wave mode is dissipated in varying amounts producing an intensity modulation effect on the optical signal. For electrical modulation, an additional dielectric (or polymer) layer with variable refractive index in optical contact with a metal layer supporting at least one plasmon wave mode is used to perturb or vary the propagation constant of plasmon wave. Propagation constant variation results in the power coupling variation between the surface plasmon wave and the optical wave. The refractive index variation of the dielectric (or polymer) layer can be accomplished via an electro-optic traveling-wave, a lump-element, or any other integrated optics modulator configuration situated to affect the layer, thereby permitting data rates into tens of GHz. Because of the extremely small interaction lengths needed, the optical plasmon-wave modulator is a very compact device which can be implemented on the top of a fiber or as an integrated optical planar structure.
Owner:VERIFIBER TECH

Disc resonator gyroscopes

Embodiments of the present invention are directed to apparatuses and methods of making a micromachined resonator gyroscope, e.g. a disc resonator gyro (DRG), including one or more of the following novel features. Embodiments of the invention may comprise a triple-wafer stack gyroscope with an all fused quartz (or all silicon) construction for an electrical baseplate, resonator and vacuum cap. This can yield superior thermal stability over prior art designs. A typical resonator embodiment may include a centrally anchored disc with high aspect-ratio in-plane electrostatic drive and sense electrodes to create large capacitance. A silicon sacrificial layer may be employed for attaching a quartz resonator wafer to a quartz handle wafer for high aspect-ratio etching. In addition, embodiments of the invention may comprise a low thermal stress, wafer-level vacuum packaged gyroscope with on-chip getter. An ultra-thin conductive layer deposited on the quartz resonator may also be utilized for high Q.
Owner:THE BOEING CO

Interposer and method for manufacturing the same

The interposer includes a glass substrate 46 with first through-electrodes 47 buried in; a plurality of resin layers 68, 20, 32 supported by the glass substrate; thin film capacitors 18a, 18b buried between a first resin layer 68 of the plural resin layers and a second resin layer 20 of the plural resin layers and including the first capacitor electrodes 12a, 12b, the second capacitor electrodes 16 opposed to the first capacitor electrodes 12a, 12b, and a dielectric thin film 14 of a relative dielectric constant of 200 or above formed between the first capacitor electrode 12a, 12b and the second capacitor electrode 16, and the second through-electrodes 77a, 77b penetrating the plural resin layers 68, 20, 32, electrically connected to the first through-electrode 47 and electrically connected to the first capacitor electrode 12a, 12b or the second capacitor electrode 16.
Owner:FUJITSU LTD

Dielectric structures having high dielectric constants, methods of forming the dielectric structures, non-volatile semiconductor memory devices having the dielectric structures and methods of manufacturing the non-volatile semiconductor memory devices

In a method of manufacturing a dielectric structure, after a tunnel oxide layer pattern is formed on a substrate, a floating gate is formed on the tunnel oxide layer. After a first dielectric layer pattern including a metal silicon oxide and a second dielectric layer pattern including a metal silicon oxynitride are formed, a control gate is formed on the dielectric structure. Since the dielectric structure includes at least one metal silicon oxide layer and at least one metal silicon oxynitride layer, the dielectric structure may have a high dielectric constant and a good thermal resistance. A non-volatile semiconductor memory device including the dielectric structure may have good electrical characteristics such as a large capacitance and a low leakage current.
Owner:SAMSUNG ELECTRONICS CO LTD

Feedback-type amplifier circuit and driver circuit

Disclosed is a feedback-type amplifier circuit including feedback-type charging means, which operates as a voltage follower, having a differential stage which receives an input-terminal voltage and an output-terminal voltage differentially as inputs and charging means for performing a charging operation at the output terminal based upon an output from the differential stage; and follower-type discharging means for performing a discharging operation at the output terminal by follower operation of an active element in accordance with a voltage difference between the input-terminal voltage and the output-terminal voltage.
Owner:RENESAS ELECTRONICS CORP

Digital control switching power-supply device and information processing equipment

To provide a digital control switching power-supply device capable of suitably achieving fast transient response at the time of a sudden load change. In parallel with normal digital signal processing means that outputs a PWM pulse signal having a desired duty, transient variation detection means composed of a CR filter provided across an output inductor and a window comparator is provided in preparation for a sudden load change. If a sudden decrease in load is detected, a PWM pulse signal having a duty of 0% is forcedly output, and if a sudden increase in load is detected, a PWM pulse signal having a duty of 100% is forcedly output.
Owner:HITACHI LTD

Switching power supply device

A switching power supply device includes a full-bridge circuit, a transformer, a rectifier circuit, a filter circuit, a first series connection of a snubber capacitor and a first diode, and a second diode. The full-bridge circuit includes switching elements which are controlled to be driven under phase-shift control. The first series connection is connected in parallel with the smoothing reactor, where one terminal is connected to a terminal on positive side of the rectifier circuit, and the other terminal is connected to an anode of the first diode. A cathode of the first diode is connected to one terminal of the smoothing capacitor which is applied with positive voltage. The second diode is provided between a terminal on negative side of the rectifier circuit and a connecting point of the snubber capacitor and the first diode. A cathode of the second diode is connected to the connecting point.
Owner:DENSO CORP

Multilayer ceramic capacitor

A multilayer ceramic capacitor includes an element body of roughly rectangular solid shape which is constituted by dielectric layers alternately stacked with internal electrode layers having different polarities, with a pair of cover layers formed on it to cover the top and bottom faces in the direction of lamination of the foregoing, and which has a pair of principal faces, a pair of end faces, and a pair of side faces, wherein external electrodes are formed on the pair of end faces and at least one of the pair of principal faces of the element body, and Tt representing the thickness of the external electrode and Tc representing the thickness of the cover layer satisfy the relationship of Tt≦Tc. The multilayer ceramic capacitor has large capacitance and also exhibits excellent thermal shock resistance while sufficiently suppressing generation of cracks.
Owner:TAIYO YUDEN KK

Semiconductor device or electronic device including the semiconductor device

To provide a semiconductor device with a small circuit size and low power consumption or an electronic device including the semiconductor device and compressing a large volume of image data. A semiconductor device of a Hopfield neural network is formed using neuron circuits and synapse circuits. The synapse circuit includes an analog memory and a writing control circuit, and the writing control circuit is formed using a transistor including an oxide semiconductor in a channel formation region. Thus, data retention lifetime of the analog memory can be extended and refresh operation for data retention can be omitted, so that power consumption of the semiconductor device can be reduced. The semiconductor device enables judgement whether learned image data and arbitrary image data match, are similar, or mismatch by comparing video data. Thus, motion compensation prediction, which is one of data compression methods, can be employed for image data.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor Device

The invention provides a semiconductor device which is non-volatile, easily manufactured, and can be additionally written. A semiconductor device of the invention includes a plurality of transistors, a conductive layer which functions as a source wiring or a drain wiring of the transistors, and a memory element which overlaps one of the plurality of transistors, and a conductive layer which functions as an antenna. The memory element includes a first conductive layer, an organic compound layer and a phase change layer, and a second conductive layer stacked in this order. The conductive layer which functions as an antenna and a conductive layer which functions as a source wiring or a drain wiring of the plurality of transistors are provided on the same layer.
Owner:SEMICON ENERGY LAB CO LTD

Solid electrolytic capacitor and electric circuit

A solid electrolytic capacitor includes a cathode including a solid electrolytic layer, an anode, and a dielectric layer provided between the cathode and the anode. The anode includes an anode body, an input anode terminal and an output anode terminal. A bypass current path for causing circuit current to detour around the anode body is formed between the input anode terminal and the output anode terminal.
Owner:ROHM CO LTD

Power Factor Correction in and Dimming of Solid State Lighting Devices

An apparatus and method provides a driver circuit that provides for power factor correction (PFC) to a load, such as a solid-state lighting (SSL) device, such as, for example, a light emitting diode (LED) or an array or cluster of LEDs. A programmable reference is provided in the circuit to operate in a fixed frequency peak current mode control (FFPCMC) or in a fixed frequency average current mode control (FFACMC). A driver circuit is employed to operate the SSL device using power derived from a main power source which may be DC or AC. In a FFPCMC embodiment, a programmable power reference is programmed to be a fixed DC voltage. In a FFACMC embodiment, source input current to the circuit can be programmed to be proportional to the rectified AC voltage after a bridge rectifier.
Owner:MAXIM INTEGRATED PROD INC

Semiconductor memory device

Conductive lines constituting word lines of memory cells and conductive lines constituting memory cell plate electrodes are formed in the same interconnecting layer in a memory device including a plurality of memory cells each including a capacitor for storing data in an electrical charge form. By forming the capacitors of the memory cells into a planar capacitor configuration, a step due to the capacitors is removed. Thus. a dynamic semiconductor memory device can be formed through CMOS process, and a dynamic semiconductor memory device suitable for merging with logic is achieved. Data of 1 bit is stored by two memory cells, and data can be reliably stored even if the capacitance value of the memory cell is reduced due to the planar type capacitor.
Owner:RENESAS ELECTRONICS CORP

Solid electrolytic capacitor

In a solid electrolytic capacitor, an anode terminal (27 in FIG. 3) has a T-shaped section in which two plate pieces intersect at right angles. One of the two plate pieces is exposed to the mounting surface of the solid electrolytic capacitor, while the other is perpendicularly erected to an anode lead (11). The two plate pieces are made of a series of continuous members.
Owner:TOKIN CORP

Capacitive pressure sensor and method therefor

A capacitive pressure sensor and method for its fabrication. The sensor is fabricated from first and second wafers to have a mechanical capacitor comprising a fixed electrode and a moving electrode defined by a conductive plate. The sensor further has a diaphragm on a surface of the first wafer that is mechanically coupled but electrically insulated from the conductive plate. A conductive layer on the surface of the first wafer is spaced apart from the conductive plate to define the fixed electrode. The second wafer is bonded to the first wafer and carries interface circuitry for the sensor, including the conductive plate and the fixed electrode which are between the first and second wafers and electrically connected to the interface circuitry. At least an opening is present in the first wafer and its first conductive layer by which the diaphragm is released and exposed to an environment surrounding the sensor.
Owner:EVIGIA SYST

Liquid crystal display device

The present invention provides a liquid crystal display device having a large holding capacitance in the inside of a pixel. A liquid crystal display device includes a first substrate, a second substrate arranged to face the first substrate in an opposed manner, and liquid crystal sandwiched between the first substrate and the second substrate. The first substrate includes a video signal line, a pixel electrode, a thin film transistor having a first electrode thereof connected to the video signal line and a second electrode thereof connected to the pixel electrode, a first silicon nitride film formed above the second electrode, an organic insulation film formed above the first silicon nitride film, a capacitance electrode formed above the organic insulation film, and a second silicon nitride film formed above the capacitance electrode and below the pixel electrode. The second silicon nitride film is a film which is formed at a temperature lower than a forming temperature of the first silicon nitride film. The first silicon nitride film and the second silicon nitride film form a contact hole therein by etching both of the first silicon nitride film and the second silicon nitride film collectively by dry etching. The second electrode and the pixel electrode are connected to each other via the contact hole. A potential different from a potential applied to the pixel electrode is applied to the capacitance electrode, and a holding capacitance is formed by the pixel electrode, the second silicon nitride film and the capacitance electrode.
Owner:PANASONIC LIQUID CRYSTAL DISPLAY CO LTD +1

Electrolytic capacitor

An electrolytic capacitor includes a capacitor element, an electrolyte solution with which the capacitor element is impregnated, and an outer package enclosing the capacitor element and the electrolyte solution. The capacitor element includes an anode foil having a dielectric layer on a surface thereof, a cathode foil, a separator disposed between the anode foil and the cathode foil, and a solid electrolyte layer in contact with the dielectric layer of the anode foil and the cathode foil. The electrolyte solution contains a low-volatile solvent that is at least one of polyalkylene glycol and a derivative of polyalkylene glycol.
Owner:PANASONIC INTELLECTUAL PROPERTY MANAGEMENT CO LTD

Metallized film capacitor

The present invention is to provide a metallized film capacitor having a compact size, a large capacitance and a low inductance whereas number of parts is reduced. The metallized film capacitor comprises: a plurality of capacitor elements (1) provided with metallized contact electrodes (2) on both ends in the width direction; a bus-bar (3) to connect each of a plurality of electrodes (2) on one end; and a capacitor case (5) to house a plurality of capacitor elements (1), wherein a plurality of capacitor elements (1) are arranged in the capacitor case such that one side of electrodes (2) faces the opening surface of capacitor case (1) and each electrode (2) of one of both ends of each capacitor element (1) are positioned generally coplanarly.
Owner:PANASONIC CORP

Metalized film capacitor

The present invention is to provide a metallized film capacitor having a compact size, a large capacitance and a low inductance whereas number of parts is reduced. The metallized film capacitor comprises: a plurality of capacitor elements (1) provided with metallized contact electrodes (2) on both ends in the width direction; a bus-bar (3) to connect each of a plurality of electrodes (2) on one end; and a capacitor case (5) to house a plurality of capacitor elements (1), wherein a plurality of capacitor elements (1) are arranged in the capacitor case such that one side of electrodes (2) faces the opening surface of capacitor case (1) and each electrode (2) of one of both ends of each capacitor element (1) are positioned generally coplanarly.
Owner:PANASONIC CORP

Semiconductor memory device and method for driving the same

In a conventional DRAM, when the capacitance of a capacitor is reduced, an error of reading data easily occurs. A plurality of cells are connected to one bit line MBL_m. Each cell includes a sub bit line SBL_n_m and 4 to 64 memory cells (a memory cell CL_n_m—1 or the like). Further, each cell includes selection transistors STr1_n_m and STr2_n_m and an amplifier circuit AMP_n_m that is a complementary inverter or the like is connected to the selection transistor STr2_n_m. Since parasitic capacitance of the sub bit line SBL_n_m is sufficiently small, potential change due to electric charge in a capacitor of each memory cell can be amplified by the amplifier circuit AMP_n_m without an error, and can be output to the bit line.
Owner:SEMICON ENERGY LAB CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products