Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

431 results about "Mn alloy" patented technology

High-damping and high-strength Mg-Cu-Mn-Zn-Y alloy and manufacturing method thereof

The invention relates to high-damping and high-strength Mg-Cu-Mn-Zn-Y alloy and a manufacturing method thereof. The high-damping and high-strength Mg-Cu-Mn-Zn-Y alloy is characterized by comprising the following alloying element components distributed in the alloy and the content value thereof in percent by weight: 1.0%-4.0% of Cu, 0.3%-1.5% of Mn, 0.3%-4.0% of Y, 1.0%-5.5% of Zn and the balance of magnesium. In order to solve the conflict of the damping property and the mechanical property of the magnesium alloy, the invention puts forward the fact that a Zn element and a Y element are added in the high-damping Mg-Cu-Mn alloy so that the Mg, the Zn and the Y form quasicrystals and / or long-prepared phases in the alloy, the quasicrystals or the long-prepared phases can introduce a great amount of new movable dislocations in a magnesium matrix, the damping property of the magnesium alloy is improved through movable dislocations newly increased in the magnesium matrix, and then the conventional heat extrusion is carried out on the alloy so that the mechanical property of the alloy is improved. The invention has the advantages of simple process, strong transportability, easy operation and lower cost and solves the problem that the Mg alloy has limited application due to high damping property and low mechanical property, and the used equipment is conventional and general equipment.
Owner:CHONGQING UNIV

Multielement-reinforced heat-resistant magnesium alloy and manufacturing method thereof

The invention discloses a multielement-reinforced heat-resistant magnesium alloy and a manufacturing method thereof. The multielement-reinforced heat-resistant magnesium alloy is prepared from the following raw materials in parts by weight: 1000 parts of magnesium, 65-85 parts of aluminum, 5-8 parts of zinc, 10-30 parts of yttrium, 1.5-5 parts of manganese, 5-15 parts of neodymium, 3-4 parts of cerium, 1-4 parts of calcium, 0.4-1 part of strontium, 0.1-0.5 part of silicon, 3-6 parts of silver and 10-40 parts of boron carbide. The manufacturing method comprises the following steps: carrying out acid washing, drying and preoxidation on the boron carbide, preheating the materials, smelting the magnesium and aluminum while introducing protective gas, adding an aluminum-manganese alloy and a pure zinc ingot to carry out alloying, adding an aluminum-silver alloy, a magnesium-silicon alloy, a magnesium-yttrium alloy, a magnesium-cerium alloy, a magnesium-neodymium alloy, a magnesium-calcium alloy and a magnesium-strontium alloy, smelting, adding the boron carbide particles for reinforcement, carrying out gas refinement on the melt by using argon, carrying out extrusion casting, and finally, carrying out solid solution aging treatment to obtain the heat-resistant magnesium alloy finished product. The magnesium alloy has excellent comprehensive properties under high-temperature conditions.
Owner:YANGZHOU FENG MING METAL PROD

High performance aluminum alloy composite foil for heat converter and method of manufacture

The invention provides a high performance aluminum alloy composite foil for a heat exchanger and a producing method thereof. An Al-Mn alloy of a core layer is coated with an Al-Si alloy on one side or both sides. The composite foil adopts the processes of: the Al-Si alloy and the Al-Mn alloy are respectively cast into ingot with the Al-Si alloy ingot hot-rolled after homogenizing treatment while the Al-Mn alloy ingot is face-milled after homogenizing treatment, then an Al-Si alloy hot rolled plate and the Al-Mn alloy ingot are paired and welded after surface treatment; the acquired covering slab is heated at a temperature of between 460 and 520 DEG C for hot rolling compounding for 4 to 9 hours, and the temperature of finishing rolling is controlled at a temperature of between 270 and 320 DEG C; and a hot rolling compounding plate goes on cold rough rolling and cold finish rolling after intermediate annealing at a temperature between 300 and 430 DEG C for 1 to 3 hours with deformation amount ranging from 30 percent to 70 percent, then a usage-state product in O and H24 treatment state is obtained through final annealing. The aluminum alloy composite foil has the advantages of excellent tensile strength, yield strength, elongation and sag resistance, appearing to be the ideal material in manufacturing components of the heat exchanger.
Owner:苏州有色金属研究院有限公司

Preparing method for three-dimensional nanometer porous graphene

The invention provides a preparing method for three-dimensional nanometer porous graphene. The preparing method includes the following steps that Cu-Mn alloy foil is prepared; dealloying treatment is carried out, and nanometer porous copper foil is obtained; the three-dimensional nanometer porous graphene is prepared, wherein the temperature rises to 200 DEG C to 400 DEG C in argon and hydrogen atmosphere, acetylene is introduced to grow hydrogenated graphite, the furnace temperature rises to 500 DEG C to 1,100 DEG C in hydrogen atmosphere, a quartz boat is rapidly moved to a temperature constant region in the middle of a reaction pipe to be roasted after the furnace temperature rises to the assigned temperature, the sample is cooled to the indoor temperature in hydrogen atmosphere after roasting is completed, the sample is immersed into corrosive fluid to remove nanometer porous copper, and a self-supporting three-dimensional nanometer porous graphene film is obtained after washing. According to the preparing method, the technological process is simple, cost is low, the pore sizes of the obtained three-dimensional nanometer porous graphene are even in distribution and are all in the nanometer level, and the obtained three-dimensional nanometer porous graphene is suitable for industrial production.
Owner:TIANJIN UNIV
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products