Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

24521results about "Battery/fuel cell control arrangement" patented technology

Tunable frangible battery pack system

A tunable frangible battery pack system for use in an electric vehicle is disclosed. The tunable frangible battery pack system includes a two piece clamshell housing. The system also includes a plurality of battery cells arranged within the housing and a collector plate secured to each piece of the housing. The system also includes a wire conductor arranged between each of the battery cells and collector plates to create a frangible disconnect system when the battery pack system and electric vehicle are exposed to a predetermined mechanical or thermal force or event.
Owner:TESLA INC

System and method for minimizing energy consumption in hybrid vehicles

The present invention provides a system and method relating to the operation of plug-in hybrid electric vehicles powered both by electricity from rechargeable batteries and by consumable fuel powered means, such as an internal combustion engine or a fuel cell. More particularly, the system and method of the claimed invention enable optimization of the energy cost associated with the operation of such plug-in hybrid electric vehicles, especially when the cost of recharging batteries from external electric power sources may be less than the cost of recharging batteries from the onboard consumable fuel powered means. To this end, the invention enables maximization of the use of electricity from external electric power sources and minimization of the use of electricity produced by the plug-in hybrid electric vehicle's onboard consumable fuel powered means, when the cost of recharging batteries from external electric power sources is less than the cost of recharging batteries from the onboard consumable fuel powered means.
Owner:SLINGSHOT IOT LLC

Control system and method for electric vehicle

An electric traction vehicle comprises a vehicle platform, a communication network, a power source mounted on the vehicle platform, a plurality of drive wheels rotatably mounted on the vehicle platform, a plurality of electric motors coupled to respective ones of the plurality of drive wheels, and a plurality of microprocessor-based interface modules coupled to the plurality of electric motors. The interface modules are configured to control the plurality of electric motors and are coupled to each other by way of the communication network.
Owner:OSHKOSH CORPORATION

Systems, methods and apparatus for vehicle battery charging

A system for charging a battery within an at least partially electric vehicle. The system includes a charging device wherein the charging device configured to electrically connect to the at least partially electric vehicle and charge at least one battery by a predetermined amount. The system also includes a network configured to determine the location of the charging device.
Owner:DEKA PROD LLP

Electric power amount information output device and system

In an electric power amount information output device for a vehicle, a control section checks whether a remaining electric power amount of a battery of a motor-driven vehicle at a departure point is less than a total electric power amount required for the vehicle to travel to a destination point. The control section drives an output section to output insufficiency information indicating that the remaining electric power amount of the battery is insufficient, if the remaining electric power amount is less than the required total electric power amount.
Owner:DENSO CORP

Tunable frangible battery pack system

A tunable frangible battery pack system for use in an electric vehicle is disclosed. The tunable frangible battery pack system includes a two piece clamshell housing. The system also includes a plurality of battery cells arranged within the housing and a collector plate secured to each piece of the housing. The system also includes a wire conductor arranged between each of the battery cells and collector plates to create a frangible disconnect system when the battery pack system and electric vehicle are exposed to a predetermined mechanical or thermal force or event.
Owner:TESLA INC

Method of Operating a Multiport Vehicle Charging System

A method of distributing charging power among a plurality of charge ports of a battery charging station is provided, where the battery charging station includes a plurality of power stages where each power stage includes an AC to DC converter and provides a portion of the charging station's maximum available charging power, the method comprising the steps of (i) monitoring battery charging station conditions and operating conditions for each charging port; (ii) determining current battery charging station conditions, including current operating conditions for each charging port; (iii) determining power distribution for the battery charging station and the charging ports in response to the current battery charging conditions and in accordance with a predefined set of power distribution rules; and (iv) coupling the power stages to the charging ports in accordance with the power distribution.
Owner:TESLA INC

System and method for transferring electrical power between grid and vehicle

The present invention discloses a system for transferring electrical power between a grid and at least one vehicle. The vehicle can be Battery Electric Vehicle (BEV), Plug-in Hybrid Electric Vehicle (PHEV) or Fuel Cell Vehicle (FCV). The type of vehicle will be recognized and controlled by the system to support demand response and supply side energy management. Vehicle recognition can be carried out by load signature analysis, power factor measurement or RFID techniques. In an embodiment of the invention, the grid is a Smart Grid. The present invention also discloses a method for facilitating electrical power transfer between the grid and the vehicle.
Owner:ITRON NETWORKED SOLUTIONS INC

Charging Service Vehicle Network

Charging service vehicle networks are among the embodiments disclosed herein, including battery module-powered EV charging roadside service vehicles. Battery modules are removably mounted to the service vehicles and manually exchanged within a system of battery module storage locations. Some embodiments provide resupply vehicles for delivering battery modules between storage locations and / or service vehicles, and may be used to exchange battery modules. Controllers are used to reserve battery modules at the storage locations to ensure availability for high priority activities. Some storage locations have charging apparatus to recharge battery modules stored there, and some storage locations are repositionable mobile units. Multiple tiers or levels of system controllers used by service vehicles to control centers are implemented to manage operations and optimize usage of battery modules and charging services across wide areas, including providing additional service vehicles to supply temporary needs for charging services.
Owner:GREEN CHARGE NETWORKS

Battery performance monitor

Improvements both in the methods whereby existing techniques for determining the condition of a battery are communicated to a user (for example, to the owner of a private vehicle, or to the service manager of a fleet of vehicles), or the vehicle's operating system, and in the methods for evaluating the condition of the battery are disclosed. It has been discovered by the inventors that the difference in internal resistance of a fully charged battery as measured during charging and as measured after charging is greater for a battery in poor condition than for a new battery. The invention relates in part to instruments and corresponding methods for evaluating the condition of a battery utilizing this discovery.
Owner:BATTERY TECH HLDG

Method of determining battery power limits for an energy storage system of a hybrid electric vehicle

A method of providing closed-loop control of power flowing into and out of an energy storage system (ESS), wherein the ESS comprises a battery is provided. The method may be implemented as a computer control algorithm for determining the charge and discharge limits for the ESS in a hybrid electric vehicle (HEV), wherein the ESS comprises a battery pack or array. The method comprises determining charge and discharge power limits during each of a plurality of control loops, comparing these limits during each of the plurality of control loops, and providing a charge power limit output and a discharge power limit output for use in a subsequent control loop which are based upon the charge power limit and the discharge power limit. The charge power limit output and discharge power limit output are set equal to the discharge power limit and charge power limit, respectively, when the discharge power limit is greater than the charge power limit; and are selected from the group consisting of the charge power limit, the discharge power limit and zero when the discharge power limit is less than or equal to the charge power limit.
Owner:GM GLOBAL TECH OPERATIONS LLC

Integrated bi-directional converter for plug-in hybrid electric vehicles

This invention relates to a power module for a plug-in hybrid electric vehicle including an integrated converter having a rectifier changing AC to DC, a DC / DC converter changing from a first voltage to a second voltage, and a battery storing electrical energy. The integrated converter operates in three modes 1) AC plug-in charging mode, 2) boost mode supplying power from the battery to the electrical bus and 3) buck mode supplying power from the electrical bus to the battery. The integrated converter utilizes the same single inductor during each of the three operating modes to reduce cost and weight of the system.
Owner:TURNTIDE TECH INC

Self-Charging Electric Vehicles and Aircraft, and Wireless Energy Distribution System

A method and system for efficient distribution of power using wireless means, and a system and method for wireless power distribution to provide electric devices, such as vehicles with a way to continuously and wirelessly collect, use and charge their power systems and thereby use the transmitted power for operation. The system and method allows a hybrid, simplified and less costly way to charge devices, such as vehicles so that the devices continuously operate while charging / recharging.
Owner:GOVERNING DYNAMICS INVESTMENT +1

Systems and methods for UAV battery exchange

Systems and methods are provided for swapping the battery on an unmanned aerial vehicle (UAV). The UAV may be able to identify and land on an energy provision station autonomously. The UAV may take off and / or land on the energy provision station. The UAV may communicate with the energy provision station. The energy provision station may store and charge batteries for use on a UAV.
Owner:SZ DJI TECH CO LTD

Battery monitor

PCT No. PCT / NZ96 / 00060 Sec. 371 Date Dec. 22, 1997 Sec. 102(e) Date Dec. 22, 1997 PCT Filed Jun. 20, 1996 PCT Pub. No. WO97 / 01103 PCT Pub. Date Jan. 9, 1997A battery monitoring system includes a circuit for use with a battery which is one of a defined (quantified re volts supplied at known current loads at known discharge levels) type of battery such as the lead-acid batteries used in vehicles. Preferred embodiments monitor at least the battery voltage under load while measuring the drawn current and use stored numerical information in order to determine whether the battery has been discharged down to a predetermined limit; one which generally retains enough charge to perform a defined act such as starting an engine. If the battery is so depleted a non-critical load (e.g. accessories) is disconnected by a switch. Changes in the non-critical load are monitored and the non-critical load is reconnected for a predetermined period when a change is detected in order to start the engine.
Owner:ZYZEBA COM +2

Power management systems and designs

Described herein are devices, systems, and methods for managing the power consumption of an automotive vehicle, and thereby for optimizing the power consumption of the vehicle. The devices and systems for managing the power consumption of the vehicle typically include power management logic that can calculate an applied power for the vehicle engine based on information provided from the external environment of the vehicle, the operational status of the vehicle, one or more command inputs from a driver, and one or more operational parameters of the vehicle.
Owner:IQAR INC

Thermal management systems and methods

A thermal management system for a vehicle includes a heat exchanger having a thermal energy storage material provided therein, a first coolant loop thermally coupled to an electrochemical storage device located within the first coolant loop and to the heat exchanger, and a second coolant loop thermally coupled to the heat exchanger. The first and second coolant loops are configured to carry distinct thermal energy transfer media. The thermal management system also includes an interface configured to facilitate transfer of heat generated by an internal combustion engine to the heat exchanger via the second coolant loop in order to selectively deliver the heat to the electrochemical storage device. Thermal management methods are also provided.
Owner:BATTELLE ENERGY ALLIANCE LLC

Refuelable battery-powered electric vehicle

The electrical vehicle energy storage system permits the electric refueling of the electric vehicle just like an automobile would be refueled with gasoline at a gas station. Circuitry on board the vehicle accessible by the electric refueling station enables the determination of the energy content of the battery module or modules returned to the electric refueling station and the owner of the vehicle is given credit for the energy remaining in the battery module or modules which have been exchanged. Selective refueling may take place for given battery modules by removing them from the battery system and charging them at home, office or factory. A process for operating an electric vehicle is also disclosed and claimed.
Owner:SCHEUCHER KARL FREDERICK

Battery charging system and method

A charging system for simultaneously charging the batteries of a plurality of battery powered vehicles. The charging includes one or more DC-DC power converters having one or more charging ports configured to plug into the batteries. The DC-DC power converters are each configured to selectively connect to more than one charging port to selectively provide for higher port power levels. The DC-DC power converters connect to an AC rectifier through a DC bus. The AC rectifier connects to an AC power source having a limited power rating. The AC charging system also has a controller that controls the operation of the DC-DC power converters such that the total power draw on the AC rectifier does not exceed the power rating. The system is further configured such that the DC-DC power converters can drain selected batteries to obtain power for charging other batteries, thus allowing for batteries to be cycled.
Owner:WEBASTO CHARGING SYST INC

Cooling structure an electric vehicle

An electric vehicle includes plurality of batteries accommodated in a rear portion of a battery box, and an electric part is accommodated in an electric part accommodating chamber provided in a front portion of the battery box. Cooling air supplied from a cooling fan to the rear portion of the battery box cools the batteries having a large thermal resistance, while being passed through a first cooling air passage around outer peripheries of the batteries at a low flow rate. A second cooling air passage having a smaller sectional area than that of the first cooling air passage is provided below the electric part accommodating chamber, and cooling fins protruding downwards from the electric part are exposed within the second cooling air passage. The second cooling air passage extends continuously the first cooling air passage in a downstream direction of airflow, so that cooling air which has first cooled the batteries then cools the electric part having a smaller thermal resistance, while being passed through the second cooling air passage at a higher flow rate than that in the first cooling air passage.
Owner:HONDA MOTOR CO LTD

Operation managing server for charging stations and operation managing system for charging stations

An operation managing server for charging stations each of which has a charger and accepts a charging request for charging a vehicle battery of a user through the charger at a charging station, including a charging request accepting unit that accepts a charging request from a user when the user makes the charging request, and a charging time estimating unit that estimates a charging time required to charge the vehicle battery of the user on the basis of past charger using data of the user, wherein when there is any charging request from a next user, the charging request accepting unit accepts the charging request concerned while reflecting the estimated charging time of the former user.
Owner:MOTION SRL +2

High energy density redox flow device

Redox flow devices are described in which at least one of the positive electrode or negative electrode-active materials is a semi-solid or is a condensed ion-storing electroactive material, and in which at least one of the electrode-active materials is transported to and from an assembly at which the electrochemical reaction occurs, producing electrical energy. The electronic conductivity of the semi-solid is increased by the addition of conductive particles to suspensions and / or via the surface modification of the solid in semi-solids (e.g., by coating the solid with a more electron conductive coating material to increase the power of the device). High energy density and high power redox flow devices are disclosed. The redox flow devices described herein can also include one or more inventive design features. In addition, inventive chemistries for use in redox flow devices are also described.
Owner:MASSACHUSETTS INST OF TECH +2

Electric vehicle having multiple-use APU system

During periods of vehicle inactivity, a vehicle-based APU electric generating system may be coupled into a regional electric grid to send electricity into the grid. A currently-preferred APU is a solid oxide fuel cell system. When a large number of vehicles are thus equipped and connected, substantial electric buffering can be effected to the grid load. A vehicle-based APU can also function as a back-up generator to a docking facility in the event of power failure of the grid. Gaseous hydrocarbon is readily supplied by pipe in many locations as a commercial and residential heating fuel source, and a hydrocarbon reformer on the vehicle can be attached to the fuel source, enabling an APU to operate as a stationary power source indefinitely. An optional storage tank on the vehicle may be refueled with gaseous fuel, for example, while the battery is being electrically recharged by the grid.
Owner:APTIV TECH LTD

Vehicle sharing system and method for allocating vehicles based on state of charge

A shared vehicle system includes a central facility, at least one vehicle distribution port facility and a plurality or fleet of vehicles, each having a vehicle subsystem. In general, the central station and port facility and the vehicle subsystems communicate in a manner to allow a user to enter information at a port facility. That information is then communicated to the central facility, where the information is processed to select a vehicle from the fleet to allocate to the user at the port facility. Selection of a vehicle for allocation to a user may be based on selecting an available or soon to be available vehicle according to various algorithms that take into account the vehicles state of charge. The central station also communicates with the port facility and the vehicle subsystem to notify the user of the selected vehicle, to provide secure user access to the selected vehicle, to monitor the location and operating status of vehicles in the fleet, to monitor the state of charge of electric vehicles and to provide other functions. The vehicles communicate with the central station to notify the central station of the PIN number of the individual attempting to use the vehicle, and of vehicle parameters such as state of charge and location of the vehicle.
Owner:RGT UNIV OF CALIFORNIA +1

Cell controller, battery module and power supply system

A cell controller having excellent productivity is provided. A cell-con 80 has 12 ICs IC-1 to IC-2 mounted on a substrate, and these ICs detect voltages of respective cells constituting a cell pack, perform capacity adjustment on the respective cells, and are mounted two by two on rectangular longer sides of a rectangular continuous straight line L-L′ defined on a substrate from the IC-1 on a highest potential side to the IC-12 on a lowest potential side continuously in order of potential differences of the corresponding cell packs. Distances between the rectangular shorter sides of the rectangular continuous straight line L-L′ are the same. On the cell-con 80, between the IC-1 to IC-12 having different ground voltages, each of the ICs has signal output terminals connected to signal input terminals of a lower order IC respectively in an electrically non-insulated state.
Owner:HITACHI ASTEMO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products