Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

23387 results about "Electric current flow" patented technology

Controlled electroporation and mass transfer across cell membranes

Electroporation is performed in a controlled manner in either individual or multiple biological cells or biological tissue by monitoring the electrical impedance, defined herein as the ratio of current to voltage in the electroporation cell. The impedance detects the onset of electroporation in the biological cell(s), and this information is used to control the intensity and duration of the voltage to assure that electroporation has occurred without destroying the cell(s). This is applicable to electroporation in general. In addition, a particular method and apparatus are disclosed in which electroporation and / or mass transfer across a cell membrane are accomplished by securing a cell across an opening in a barrier between two chambers such that the cell closes the opening. The barrier is either electrically insulating, impermeable to the solute, or both, depending on whether pore formation, diffusive transport of the solute across the membrane, or both are sought. Electroporation is achieved by applying a voltage between the two chambers, and diffusive transport is achieved either by a difference in solute concentration between the liquids surrounding the cell and the cell interior or by a differential in concentration between the two chambers themselves. Electric current and diffusive transport are restricted to a flow path that passes through the opening.
Owner:RGT UNIV OF CALIFORNIA

LED array primary display light sources employing dynamically switchable bypass circuitry

The invention comprises use of Dynamically Switchable Bypass (DSB) elements in association with one or more Light Emitting Diodes (LEDs) in arrays for illumination circuits to provide rugged, reliable lighting. The DSBs are selected from Transient Voltage Suppressors, including Silicon, Metal Oxide Varistors, and Multi Layer Varistors as well as Zener Diodes. The DSBs are not used as circuit protecting devices, but rather as alternative paths for electric current to bypass failed LEDs. Bi-directional TVSs are used as alternative electric paths for circuits using Alternating Current (AC) and parallel LED arrays that light on both phases of AC. Zener Diodes are used in parallel to, but in the opposite polarity orientation to, one or more LEDs in DC or rectified AC circuits. The inventive paired DSB/LED elements overcomes the black-out problems of prior series LED illumination systems, making possible the use of robust LEDs in illumination systems where reliability, long life, low power consumption, low heat output, resistance to shock, vibration, and humidity, and self-diagnosis are important. The DSB elements have breakdown voltages slightly higher than the LED(s) they support, so that when an LED fails, the conduction through the DSB begins. Because the conduction voltage of the DSB so nearly matches the conduction voltage of the LED(s), the remainder of the circuit continues to function as normal. The system is self-diagnostic in that any LED failure presents itself as a dark LED rather than as a whole string of dark LEDs. DSBs may be used with incandescent bulbs.
Owner:IDD AEROSPACE

Battery active material powder mixture, electrode composition for batteries, secondary cell electrode, secondary cell, carbonaceous material powder mixture for electrical double-layer capacitors, polarizable electrode composition, polarizable electrode, and electrical double-layer capacitor

An active material powder mixture for batteries or a carbonaceous material powder mixture for electrical double-layer capacitors is composed of a battery active material or a carbonaceous material in combination with an electrically conductive powder that adheres to the periphery of the active material or carbonaceous material and has an average particle size of 10 nm to 10 mupm. The battery active material powder mixture may be used to make electrodes for secondary batteries. The carbonaceous material powder mixture may be used to make polarizable electrodes for electrical double-layer capacitors. Secondary cells produced using the active material powder mixture can lower an impedance of an electrode and operate at a high capacity and a high current, have a high rate property, and are thus well-suited for use as lithium secondary cells and lithium ion secondary cells. Electrical double-layer capacitors made using the carbonaceous material powder mixture have a high output voltage and a high capacity because of a low impedance.
Owner:NISSHINBO IND INC

Multiple power source system and apparatus, motor driving apparatus, and hybrid vehicle with multiple power source system mounted thereon

In a multiple power source system of the present invention that has an inverter connected to a reactance, such as three-phase coils in a motor, a high voltage battery is connected with a low voltage battery via one transistor (Tr2) and one diode (D2) included in the inverter and one phase coil (U-phase coil) of the three-phase motor. The transistor Tr2 is turned on to make the electric current flow from the low voltage battery to the U-phase coil. The transistor Tr2 is subsequently turned off at a preset timing, so that the electric energy accumulated in the reactance, that is, the U-phase coil, flows through the diode D1 into the high voltage battery and thereby charges the high voltage battery. This arrangement enables the charging process from the low voltage battery to the high voltage battery without any complicated circuit structure for the voltage step-up. The three-phase motor may be unipolar driven with transistors connected to one side of the inverter. The arrangement of the present invention does not require any complicated structure, which undesirably increases the size of the multiple power source system, in order to ensure mutual supplement of the electric energy between electric systems having a large difference in voltage, for example, an electric system for driving a hybrid vehicle and an electric system for its control circuit.
Owner:TOYOTA JIDOSHA KK

Remote current sensor monitoring system and GPS tracking system and method for mechanized irrigation systems

A wireless interface remote monitoring system for self-propelled irrigation systems (center pivot and lateral move sprinklers) includes a remote terminal unit (RTU) mounted on an outer drive tower of the irrigation system. The RTU includes a radio transceiver capable of sending and receiving data packets over a satellite or terrestrial telemetry backbone to and from a central control computer. The RTU further includes a current sensor and a GPS receiver both for detecting movement or non-movement of the sprinkler, a microprocessor with nonvolatile memory for storing current data and GPS coordinate data from readings taken in series over time, and a pressure or flow sensor for detecting the presence or absence of water flow at the outer drive tower of the sprinkler. The current sensor connected between the RTU and a tower drive motor, allows the RTU to calculate the “movement” or “non-movement” of the irrigation system over a specified time period. Redundantly, the GPS receiver records changes in position to indicate movement or non-movement within the GPS error tolerance. Once a change from movement to non-movement or vice-versa is determined, the RTU transmits the data by satellite or radio telemetry to a central control computer which logs the movement or non-movement of the monitored drive tower, the GPS coordinate data and the water status readings, all with time and date stamp. The central control computer creates “page message” and “text message” updates as necessary on the status of individual irrigation systems and “groups” of irrigation systems that are in turn delivered to wireless devices and computers for sprinkler operators.
Owner:HAALAND KARLYLE
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products