Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

911 results about "Address bus" patented technology

An address bus is a computer bus that is used to specify a physical address. When a processor or DMA-enabled device needs to read or write to a memory location, it specifies that memory location on the address bus. The width of the address bus determines the amount of memory a system can address. For example, a system with a 32-bit address bus can address 2³² memory locations. If each memory address holds one byte, the addressable memory space is 4 GB.

Multiprocessor node controller circuit and method

Improved method and apparatus for parallel processing. One embodiment provides a multiprocessor computer system that includes a first and second node controller, a number of processors being connected to each node controller, a memory connected to each controller, a first input / output system connected to the first node controller, and a communications network connected between the node controllers. The first node controller includes: a crossbar unit to which are connected a memory port, an input / output port, a network port, and a plurality of independent processor ports. A first and a second processor port connected between the crossbar unit and a first subset and a second subset, respectively, of the processors. In some embodiments of the system, the first node controller is fabricated onto a single integrated-circuit chip. Optionally, the memory is packaged on plugable memory / directory cards wherein each card includes a plurality of memory chips including a first subset dedicated to holding memory data and a second subset dedicated to holding directory data. Further, the memory port includes a memory data port including a memory data bus and a memory address bus coupled to the first subset of memory chips, and a directory data port including a directory data bus and a directory address bus coupled to the second subset of memory chips. In some such embodiments, the ratio of (memory data space) to (directory data space) on each card is set to a value that is based on a size of the multiprocessor computer system.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP +1

Single chip microcomputer having a dedicated address bus and dedicated data bus for transferring register bank data to and from an on-line RAM

A single chip microcomputer comprises a central processing unit (CPU) 2, a on-chip RAM 3, a on-chip ROM 5, a first bus DBUS for connecting the CPU, RAM, and ROM with one another and transferring data between them, a second bus ABUS for passing address data corresponding to the data passed through the first bus, a third bus SDBUS for connecting the CPU 2 with the RAM 3 and transferring data between them, the number of bits of the third bus SDBUS being larger than that of the first bus DBUS, and a fourth bus BABUS for connecting the CPU 2 with the RAM 3 and passing address data corresponding to the data passed through the third bus SDBUS. The CPU 2 has a data memory RF serving as general purpose registers for providing internal data to the third bus SDBUS, and a bank specifying register BP for holding positional data of a mapping region in the RAM 3 where the contents of the data memory RF are mapped and providing the positional data to the fourth bus BABUS. The RAM 3 has a memory cell array 31, a bank address control circuit 35 connected to the fourth bus BABUS, for generating a real address according to the contents of the bank specifying register BP (BP0, BP1), and a selection circuit 37 for selecting the real address generated by the bank address control circuit 35, or the address provided through the second bus ABUS.
Owner:KK TOSHIBA

High reliability memory module with a fault tolerant address and command bus

A high reliability dual inline memory module with a fault tolerant address and command bus for use in a server. The memory module is a card approximately 151.35 mm or 5.97 inches long provided with about a plurality of contacts of which some are redundant, a plurality of DRAMs, a phase lock loop, a 2 or 32K bit serial EE PROM and a 28 bit and a 1 to 2 register having error correction code (ECC), parity checking, a multi-byte fault reporting circuitry for reading via an independent bus, and real time error lines for determining and reporting both correctable errors and uncorrectable error conditions coupled to the server's memory interface chip and memory controller or processor such that the memory controller sends address and command information to the register via address / command lines together with check bits for error correction purposes to the ECC / Parity register. By providing the module with a fault tolerant address and command bus fault-tolerance and self-healing aspects necessary for autonomic computing systems compatible with industry-standards is realized. The memory module corrects single bit errors on the command or address bus and permits continuous memory operation independent of the existence of these errors and can determine any double bit error condition. The redundant contacts on the module prevents what would otherwise be single points of failure.
Owner:IBM CORP

Multiprocessor node controller circuit and method

Improved method and apparatus for parallel processing. One embodiment provides a multiprocessor computer system that includes a first and second node controller, a number of processors being connected to each node controller, a memory connected to each controller, a first input / output system connected to the first node controller, and a communications network connected between the node controllers. The first node controller includes: a crossbar unit to which are connected a memory port, an input / output port, a network port, and a plurality of independent processor ports. A first and a second processor port connected between the crossbar unit and a first subset and a second subset, respectively, of the processors. In some embodiments of the system, the first node controller is fabricated onto a single integrated-circuit chip. Optionally, the memory is packaged on plugable memory / directory cards wherein each card includes a plurality of memory chips including a first subset dedicated to holding memory data and a second subset dedicated to holding directory data. Further, the memory port includes a memory data port including a memory data bus and a memory address bus coupled to the first subset of memory chips, and a directory data port including a directory data bus and a directory address bus coupled to the second subset of memory chips. In some such embodiments, the ratio of (memory data space) to (directory data space) on each card is set to a value that is based on a size of the multiprocessor computer system.
Owner:HEWLETT-PACKARD ENTERPRISE DEV LP +1

Method and apparatus for storing and distributing memory repair information

A system for repairing embedded memories on an integrated circuit is disclosed. The system comprises an external Built-In Self-repair Register (BISR) associated with every reparable memory on the circuit. Each BISR is configured to accept a serial input from a daisy chain connection and to generate a serial output to a daisy chain connection, so that a plurality of BISRs are connected in a daisy chain with a fuse box controller. The fuse box controller has no information as to the number, configuration or size of the embedded memories, but determines, upon power up, the length of the daisy chain. With this information, the fuse box controller may perform a corresponding number of serial shift operations to move repair data to and from the BISRs and into and out of a fuse box associated with the controller. Memories having a parallel repair interface are supported by a parallel address bus and enable control signal on the BISR, while those having a serial repair interface are supported by a parallel daisy chain path that may be selectively cycled to shift the contents of the BISR to an internal serial register in the memory. Preferably, each of the BISRs has an associated repair analysis facility having a parallel address bus and enable control signal by which fuse data may be dumped in parallel into the BISR and from there, either uploaded to the fuse box through the controller or downloaded into the memory to effect repairs. Advantageously, pre-designed circuit blocks may provide daisy chain inputs and access ports to effect the inventive system therealong or to permit the circuit block to be bypassed for testing purposes.
Owner:SIEMENS PROD LIFECYCLE MANAGEMENT SOFTWARE INC

Method and apparatus for avoiding data bus grant starvation in a non-fair, prioritized arbiter for a split bus system with independent address and data bus grants

InactiveUS6535941B1Reduce delaysSpeeding up data bus grant processMemory systemsMulti processorAddress bus
A distributed system structure for a large-way, symmetric multiprocessor system using a bus-based cache-coherence protocol is provided. The distributed system structure contains an address switch, multiple memory subsystems, and multiple master devices, either processors, I/O agents, or coherent memory adapters, organized into a set of nodes supported by a node controller. The node controller receives transactions from a master device, communicates with a master device as another master device or as a slave device, and queues transactions received from a master device. Since the achievement of coherency is distributed in time and space, the node controller helps to maintain cache coherency. In order to reduce the delays in giving address bus grants, a bus arbiter for a bus connected to a processor and a particular port of the node controller parks the address bus towards the processor. A history of address bus grants is kept to determine whether any of the previous address bus grants could be used to satisfy an address bus request associated with a data bus request. If one of them qualifies, the data bus grant is given immediately, speeding up the data bus grant process by anywhere from one to many cycles depending on the requests for the address bus from the higher priority node controller.
Owner:IBM CORP

Debugging embedded systems

An embedded system is provided with the capability to be debugged. The embedded system includes a central processing unit (CPU) that is coupled to a bus having certain contents. A register, also with contents, is available for loading by the CPU. Finally, a debug logic circuit is also included. The debug logic circuit is coupled to both the bus and the CPU. The debug circuit itself is composed of a breakpoint detect circuit that is coupled to the bus and to the register. This circuitry enables a breakpoint signal that is produced by the breakpoint detect circuit when the contents of the register equal the contents of the bus. A method is also provided for debugging an embedded system having a microcontroller with a CPU. First, a debug logic circuit that resides on the same chip as the microcontroller is programmed to detect a predetermined condition in the microcontroller. Next, application software is run on the microcontroller. When a predetermined condition is detected, the CPU is interrupted which provides the ability to view the condition of the microcontroller. Programming the debug logic circuit can include the storing of a breakpoint address in a breakpoint address register. Afterward, a program memory address bus is selected for comparison to the contents of the breakpoint address register, upon which time a breakpoint counter is set to zero. The steps of interrupting and detecting are accomplished by comparing the contents of the program memory address bus to the contents of the breakpoint register and, if they are equal, then the CPU is interrupted.
Owner:MICROCHIP TECH INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products