Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

87 results about "Minimal risk" patented technology

Method and apparatus for increasing virtual storage capacity in on-demand storage systems

A method and apparatus are disclosed for increasing virtual storage capacity in on-demand storage systems. The method utilizes data compression to selectively compress data stored in a storage resource to reduce the utilization of physical storage space whenever such physical resources have been over committed and the demand for physical storage exceeds its availability. In one exemplary embodiment, the utilization of the capacity of a shared storage resource is monitored and data is selected for compression based on the utilization. The compression of the selected data is triggered in response to the monitoring results. In addition, policies and rules are defined that determine which data is selected for compression. For example, the selection of data may be based on one or more of the following: a degree of utilization of said capacity of said shared storage resource, a volume size of said data, an indicator of compressibility of said data, a frequency of use of said data, a manual selection of said data, and a predefined priority of said data. The disclosed methods improve the operation of virtual allocation by further enhancing the availability of physical space through data compression. Virtual allocation and block-based data compression techniques are utilized to improve storage efficiency with a minimal risk to system availability and reliability and with a minimal impact to performance (access time and latency).
Owner:IBM CORP

Methods and apparatus for percutaneous aortic valve replacement

A delivery system and method for percutaneous aortic valve (PAV) replacement and apparatus used therein. A temporary aortic valve comprised of a reversibly expandable occluding means, such as balloons, surrounds a central catheter mechanism. The temporary valve is positioned within the ascending aorta, just above and downstream from the coronary ostia. The occluding means is configured such that, when fully expanded against the aortic wall, gaps are left that promote continuous coronary perfusion during the cardiac cycle. The temporary valve with occluding means substitutes for the function of the native aortic valve during its replacement. The native aortic valve is next dilated, and then ablated through deployment of low profile, elongated, sequentially delivered stents. The ablation stent(s) displace the native valve tissues and remain within the aortic annulus to receive and provide a structure for retaining the PAV. The PAV is delivered, positioned and deployed within the ablation stent(s) at the aortic annulus with precision and relative ease. Ablation of the native aortic valve removes the structural obstacles to precise PAV placement. The temporary aortic valve mediates the hemodynamic forces upon the devices as encountered by the surgeon following native valve ablation. The temporary valve also promotes patient stability through continuous coronary perfusion and a moderated transvalvular pressure gradient and regurgitation. Sequential delivery of low profile PAV components minimize the risk of trauma and injury to vascular tissues. Mathematical considerations for determining the optimum cross-sectional area for the temporary valve blood perfusion gaps are also described.
Owner:HOCOR CARDIOVASCULAR TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products