Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

36 results about "Benzanthracene" patented technology

Group of hydrocarbons in which a benzene and anthracene ring have a double bond in common.

Crosslinkable host materials

The invention relates to a crosslinkable organic molecule having a structure of the formula (1) and to the use thereof, wherein Ar is independently of one another, an unsaturated or aromatic carbo- or heterocyclic unit with 5 to 30 ring atoms, selected from the group consisting of naphthalene, anthracene, phenanthrene, pyrene, dihydropyrene, chrysene, perylene, fluoranthene, benzanthracene, tetracene, pentacene, benzpyrene, furan, benzofuran, isobenzofuran, thiophene, benzothiophene, isobenzothiophene, dibenzothiophene, pyrrole, indole, isoindole, carbazole, pyridine, quinoline, isoquinoline, acridine, phenanthridine, benzo-5,6-quinoline, benzo-6,7-quinoline, benzo-7,8-quinoline, phenothiazine, phenoxazine, pyrazole, indazole, imidazole, benzimidazol, naphthimidazole, phenanthrimidazole, pyridimidazole, pyrazine-imidazole, quinoxalinimidazole, oxazole, benzoxazole, naphthoxazole, anthroxazole, phenanthroxazole, isoxazole, isothiazole, 1,3-thiazole, benzothiazole, pyridazine, benzopyridazine, pyrimidine, benzpyrimidine, quinoxaline, pyrazine, phenazine, naphthyridine, azacarbazole, benzocarboline, phenanthroline, 1,2,3-triazole, 1,2,4-triazole, benzotriazole, 1,2,3-oxadiazole, 1,2,4-oxadiazole, 1,2,5-oxadiazole, 1,3,4-oxadiazole, 1,2,3-thiadiazole, 1,2,4-thiadiazole, 1,2,5-thiadiazole, 1,3,4-thiadiazole, 1,3,5-triazine, 1,2,4-triazine, 1,2,3-triazine, tetrazole, 1,2,3,4- oxatriazole, 1,2,3,4-oxatriazole, 1,2,4,5-tetrazine, 1,2,3,4-tetrazine, 1,2,3,5-tetrazin, purine, pteridine, indolizine, benzothiadiazole, indenocarbazole, indenofluorene, spirobifluorene, and indolocarbazole; D1 is a donor group having a structure of the formula (1a); and D2 is a donor group having a structure of the formula (1b).
Owner:SAMSUNG DISPLAY CO LTD

Benzanthracene organic luminescent material, and preparation method and application thereof

The invention relates to a benzanthracene organic luminescent material, and a preparation method and application thereof. The invention solves the technical problems that the anthracene luminescent material in the prior art can not satisfy the operating requirement for OLEDs (organic light-emitting diodes). The benzanthracene organic luminescent material provided by the invention is prepared by reacting R1 / R2-substituted diamine compound, R2-substituted halide and benzanthracene bromine substitute. Due to the introduction of the substituted group, the material has the advantages of higher solubility and favorable film-forming properties. The preparation method provided by the invention has the advantages of simple synthesis and purification processes and low cost, and can satisfy the demands of industrialization. Compared with the device prepared by using arylamino-substituted anthracene as the luminescent layer, the device prepared from the material provided by the invention has obviously higher luminescence efficiency and longer half-time service life; the luminescence efficiency is 26 Lm / w, and the half-time service life is 20000 hours; and thus, the material can satisfy the operating requirements for OLEDs.
Owner:JILIN OPTICAL & ELECTRONICS MATERIALS

Silicious benzanthracene organic electroluminescent material, and preparation method and application thereof

The invention relates to a silicious benzanthracene organic electroluminescent material, and a preparation method and application thereof. The invention solves the technical problems that the anthracene luminescent material in the prior art can not satisfy the operating requirement for OLEDs (organic light-emitting diodes). The benzanthracene organic electroluminescent material provided by the invention is an R1/R2-substituted silicious benzanthracene compound prepared by reacting R1/R2-substituted amine compound and silicious benzanthracene bromine substitute. Due to the introduction of different substituted groups, the material has the advantages of higher solubility and favorable film-forming properties. The preparation method provided by the invention has the advantages of simple synthesis and purification processes and low cost, and can satisfy the demands of industrialization. Compared with the device prepared by using 9,10-di(2-naphthyl)anthracene as the luminescent layer, the device prepared from the material provided by the invention has obviously higher luminescence efficiency and longer half-time service life; the luminescence efficiency is 25 Lm/w, and the half-time service life is 20000 hours; and thus, the material can satisfy the operating requirements for OLEDs.
Owner:JILIN OPTICAL & ELECTRONICS MATERIALS

Benzanthracene organic luminescent material, and preparation method and application thereof

The invention relates to a benzanthracene organic luminescent material, and a preparation method and application thereof. The invention solves the technical problems that the anthracene luminescent material in the prior art can not satisfy the operating requirement for OLEDs (organic light-emitting diodes). The benzanthracene organic luminescent material provided by the invention is prepared by reacting R1 / R2-substituted diamine compound, R2-substituted halide and benzanthracene bromine substitute. Due to the introduction of the substituted group, the material has the advantages of higher solubility and favorable film-forming properties. The preparation method provided by the invention has the advantages of simple synthesis and purification processes and low cost, and can satisfy the demands of industrialization. Compared with the device prepared by using arylamino-substituted anthracene as the luminescent layer, the device prepared from the material provided by the invention has obviously higher luminescence efficiency and longer half-time service life; the luminescence efficiency is 26 Lm / w, and the half-time service life is 20000 hours; and thus, the material can satisfy the operating requirements for OLEDs.
Owner:JILIN OPTICAL & ELECTRONICS MATERIALS

Synthesis method of boron-nitrogen benzanthracene fused-ring compound

Provided is a synthesis method of a boron-nitrogen benzanthracene fused-ring compound. The synthesis method of the boron-nitrogen benzanthracene fused-ring compound comprises the step of adopting boron-nitrogen benzanthracene halide, a coupling precursor, a catalyst, a ligand and the like as raw materials for a reaction at the temperature of 60-140 DEG C for 3-24 hours under the protection of nitrogen to obtain the boron-nitrogen benzanthracene fused-ring compound. The boron-nitrogen benzanthracene halide is a boron-nitrogen benzanthracene monobromo (chloro)-substituted or dibromo (chloro)-substituted derivative; the coupling precursor is selected from diphenylamine and derivatives thereof, pyrene boric acid and derivatives thereof and the like. The catalyst is selected from palladium acetate, ditriphenylphosphine palladium dichloride and the like. The ligand is selected from triphenyl phosphine, tricyclohexyl phosphine and the like. According to the method, a boron-nitrogen aromatic ring is used as a basic framework for derivatization, so that the problem of poor selectivity of a direct boronization reaction is avoided, and meanwhile, the use of a sensitive reagent is avoided. Theprovided synthesis method of the boron-nitrogen benzanthracene fused-ring compound is wide in application range of raw materials, simple in reaction, high in reaction specificity and yield and smallin environmental pollution, and the variety of boron-nitrogen compounds is enriched.
Owner:JIUJIANG UNIVERSITY

A kind of silicon-containing benzanthracene organic electroluminescent material and its preparation method and application

The invention relates to a silicious benzanthracene organic electroluminescent material, and a preparation method and application thereof. The invention solves the technical problems that the anthracene luminescent material in the prior art can not satisfy the operating requirement for OLEDs (organic light-emitting diodes). The benzanthracene organic electroluminescent material provided by the invention is an R1 / R2-substituted silicious benzanthracene compound prepared by reacting R1 / R2-substituted amine compound and silicious benzanthracene bromine substitute. Due to the introduction of different substituted groups, the material has the advantages of higher solubility and favorable film-forming properties. The preparation method provided by the invention has the advantages of simple synthesis and purification processes and low cost, and can satisfy the demands of industrialization. Compared with the device prepared by using 9,10-di(2-naphthyl)anthracene as the luminescent layer, the device prepared from the material provided by the invention has obviously higher luminescence efficiency and longer half-time service life; the luminescence efficiency is 25 Lm / w, and the half-time service life is 20000 hours; and thus, the material can satisfy the operating requirements for OLEDs.
Owner:JILIN OPTICAL & ELECTRONICS MATERIALS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products