Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

366 results about "Dynamic motion" patented technology

Color translating UV microscope

A color translating UV microscope for research and clinical applications involving imaging of living or dynamic samples in real time and providing several novel techniques for image creation, optical sectioning, dynamic motion tracking and contrast enhancement comprises a light source emitting UV light, and visible and IR light if desired. This light is directed to the condenser via a means of selecting monochromatic, bandpass, shortpass, longpass or notch limited light. The condenser can be a brightfield, darkfield, phase contrast or DIC. The slide is mounted in a stage capable of high speed movements in the X, Y and Z dimensions. The microscope uses broadband, narrowband or monochromat optimized objectives to direct the image of the sample to an image intensifier or UV sensitive video system. When an image intensifier is used it is either followed by a video camera, or in the simple version, by a synchronized set of filters which translate the image to a color image and deliver it to an eyepiece for viewing by the microscopist. Between the objective and the image intensifier there can be a selection of static or dynamic switchable filters. The video camera, if used, produces an image which is digitized by an image capture board in a computer. The image is then reassembled by an overlay process called color translation and the computer uses a combination of feedback from the information in the image and operator control to perform various tasks such as optical sectioning and three dimensional reconstruction, coordination of the monochromater while collecting multiple images sets called image planes, tracking dynamic sample elements in three space, control of the environment of the slide including electric, magnetic, acoustic, temperature, pressure and light levels, color filters and optics, control for microscope mode switching between transmitted, reflected, fluorescent, Raman, scanning, confocal, area limited, autofluorescent, acousto-optical and other modes.
Owner:RICHARDSON TECH

Method and device for realizing interaction of augment reality (AR) and mobile terminal

The embodiment of the invention discloses a method and a device for realizing interaction of an augment reality (AR) and a mobile terminal. The method comprises the following steps of: acquiring the information of a pattern, wherein the pattern is an interactive scene of the AR; determining the three-dimensional information of a virtual scene according to the information of the pattern; calculating an initial relative spatial position relationship among the virtual scene, the AR interaction device and the pattern according to the three-dimensional information; superposing the virtual scene and the pattern according to the initial relative spatial position relationship; acquiring a spatial position relationship of the AR interaction device, and determining a three-dimensional dynamic motion path of the AR interaction device; obtaining a current relative spatial position relationship among the virtual scene, the AR interaction device and the pattern according to the initial relative spatial position relationship and the three-dimensional dynamic motion path; and superposing the virtual scene and the pattern according to the current relative spatial position relationship. Therefore, the stability of the process of AR interaction is improved, and the operability of the AR interaction is improved.
Owner:HUAWEI DEVICE CO LTD

High-dynamic weak-signal rapid capture method for direct sequence spread spectrum system

The invention discloses a high-dynamic weak-signal rapid capture method for a direct sequence spread spectrum system, belonging to the field of radio communication. Because a spread spectrum carrier has a chirp signal characteristic under the condition of high-dynamic motion (high-speed and high-acceleration), the high-dynamic weak-signal rapid capture method comprises the steps of: firstly, carrying out carrier Doppler frequency compensation by using a time frequency focusing characteristic of fractional order Fourier transform; secondly, carrying out incoherent accumulation on a spread frequency signal by using an order resolving capacity of the fractional order Fourier transform; and finally, carrying out capture judgment on the signal in an order Fourier domain by using a constant false alarm rate detection technology. According to the invention, the difficulty of incapability of long-time coherent accumulation under the high-dynamic condition in the traditional Fourier transform based rapid capture method is solved; and under the condition of high dynamicity and low signal to noise ratio, the signal to noise ratio is effectively increased and the signal capture time is shortened. In addition, a rapid algorithm exists in the invention and is easy to realize on the engineering in real time.
Owner:BEIJING INSTITUTE OF TECHNOLOGYGY
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products