Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

836 results about "Strain relief" patented technology

Adjustable strain relief boot

An adjustable strain relief boot includes a stationary portion and a moving portion slidably connected to the stationary portion. The adjustable strain relief boot is used to guide an optical fiber away from a connector of the optical fiber. In application, the stationary portion of the adjustable strain relief boot is press fitted onto to the connector. The adjustable strain relief boot provides for a predetermined, fixed angle of departure of the optical fiber away from the connector. The fixed angle of departure can be adjusted by the operator from a first position to a second position. The fixed angle of departure is adjustable between forty five and ninety degrees. In a locked position, the moving portion can not move relative to the stationary portion since actuator engagement teeth of an actuator arm of the stationary portion engage teeth of the moving portion. In an unlocked position, a force is applied to a release tab of the actuator arm of the stationary portion so as to disengage the actuator engagement teeth of the stationary from the teeth of the moving portion so as to allow the moving portion to move relative to the stationary portion. Due to the resiliency of the actuator arm of the stationary portion, when the force applied to the release tab is removed, the actuator arm tends to move towards its undeflected position thus engaging the actuator engagement teeth with the teeth of the moving portion.
Owner:STRATOS INT

Control System for a Remote Vehicle

A control system for operation of a remote vehicle comprises a twin-grip hand-held controller having a volume of less than 1 liter and a weight of less than 1 lb. The twin-grip hand-held controller includes: a left grip shaped to be held between a user's left little finger, ring finger, and the ball of the thumb, leaving the user's left index finger, middle finger, and thumb free; a left control zone adjacent to the left grip, including a first analog joystick and a first 4-way directional control manipulable by the left thumb, and a left rocker control located on a shoulder portion of the controller; a right handed grip shaped to be held between the user's right little finger, ring finger, and the ball of the thumb, leaving the user's left index finger, middle finger, and thumb free; a right control zone adjacent the right grip, including a second analog joystick and a second 4-way directional control manipulable by the right thumb, and a right rocker control located on a shoulder portion of the controller; a tether zone between the left control zone and the right control zone, including a tether anchor configured to tether the hand controller between the left grip and the right grip and to permit the hand controller to hang with the left grip and right grip pointing upward; a tether extending from the tether anchor to the right shoulder of an operator, the tether including a strain relief section. A quick-release pad is worn on an operator's chest, the quick-release pad including a first fastener for affixing the quick-release pad to available mounts on the operator, and a second quick-release fastener for holding the hand-held controller to the quick-release pad to be readily removable by pulling on the hand-held controller.
Owner:FLIR DETECTION

Fiber-Bragg-grating-based strain measuring apparatus, system and method

The invention was originally developed to determine the strain-relief capability of a fusion splice protector as well as the compressive stress imparted to a fusion splice by the splice protector. The invention also permits performance and comparative analyses of splice protectors as well as any package in which the optical fiber is at least partially disposed. To those ends a fiber Bragg grating (FBG) is axially arranged relative to the package such that a free or reference section of the FBG protrudes from the package while a shielded section lies within the package. Broadband light is supplied to the FBG which reflects certain wavelengths that are measured by an optical spectrum analyzer. The FBG reflected spectra will be split into two peaks as the reference and shielded sections experience different amounts or types of stress thereby providing a powerful analysis tool. A wavelength shift in the reflected spectra reveals the amount of stress experienced by the reference and free sections and permits a qualitative and quantitative analysis of the stress applied by the package and the package's ability to protect fiber from stress (e.g. such as that imposed by a tension pull test). Measurements may be made after a variety of conditions are changed such as splice protector curing, axial tension application, axial tension release, time, and age accelerating environments. Comparative studies and various other calculations may also be performed to evaluate different packages.
Owner:CIENA
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products