Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

431 results about "Ring finger" patented technology

The ring finger is the fourth finger of a human hand. It is located between the third and fifth digits, between the middle finger and the little finger. It is so named for its traditional association with wedding rings in many cultures, though not all cultures use this finger as the ring finger. In some cultures the wedding ring is worn on the "ring finger" of the left hand and in others it is on the right hand. Traditionally, a wedding ring was worn only by the bride/wife, but in recent times more men also wear a wedding ring. It is also the custom in some cultures to wear an engagement ring on the ring finger.

Control System for a Remote Vehicle

A control system for operation of a remote vehicle comprises a twin-grip hand-held controller having a volume of less than 1 liter and a weight of less than 1 lb. The twin-grip hand-held controller includes: a left grip shaped to be held between a user's left little finger, ring finger, and the ball of the thumb, leaving the user's left index finger, middle finger, and thumb free; a left control zone adjacent to the left grip, including a first analog joystick and a first 4-way directional control manipulable by the left thumb, and a left rocker control located on a shoulder portion of the controller; a right handed grip shaped to be held between the user's right little finger, ring finger, and the ball of the thumb, leaving the user's left index finger, middle finger, and thumb free; a right control zone adjacent the right grip, including a second analog joystick and a second 4-way directional control manipulable by the right thumb, and a right rocker control located on a shoulder portion of the controller; a tether zone between the left control zone and the right control zone, including a tether anchor configured to tether the hand controller between the left grip and the right grip and to permit the hand controller to hang with the left grip and right grip pointing upward; a tether extending from the tether anchor to the right shoulder of an operator, the tether including a strain relief section. A quick-release pad is worn on an operator's chest, the quick-release pad including a first fastener for affixing the quick-release pad to available mounts on the operator, and a second quick-release fastener for holding the hand-held controller to the quick-release pad to be readily removable by pulling on the hand-held controller.
Owner:FLIR DETECTION

Multiple-freedom degree wearing type rehabilitation training robot for function of hand and control system thereof

The invention discloses a multi-freedom wearable robot for hand function recovery. The robot comprises mechanical arms and mechanical fingers; the mechanical fingers consist of a mechanical thumb, a forefinger, a middle finger, a ring finger and a little finger, wherein the forefinger, the middle finger, the ring finger and the little finger have the same structure as that of the thumb; the mechanical forefinger mainly comprises air muscle, a finger end bracket, a first middle connecting piece, a finger front end bracket and a second middle connecting piece which are connected in turn through a connecting rod; the air muscle drives the second middle connecting piece to move through a rigid string so that the finger of a patient makes lituate and adduction exercises; the inside of each connecting piece is provided with a pressure spring; and inside walls of the two connecting pieces are distributed with rolling beads to reduce friction between the connecting rod and the connecting pieces. The invention also provides a control system and an integrated electricity stimulation system of the robot to assist a patient to rebuild muscle function. The robot provides an assisted exercise mechanism for the fingers, has multiple freedom degrees and dimension adjustable movement mechanism, and can effectively assist the patient to finish repeated training of composite exercise for fingers and complicated finger dividing exercise.
Owner:HUAZHONG UNIV OF SCI & TECH

Hand exoskeleton device for rehabilitation training

The invention discloses a hand exoskeleton device for rehabilitation training. The hand exoskeleton device comprises an opisthenar mechanism, a power source, an index finger exoskeleton, a middle finger exoskeleton, a ring finger exoskeleton, a little finger exoskeleton and a thumb exoskeleton. The opisthenar mechanism comprises an opisthenar platform, a motor support and a screw support. The power source comprises an index finger part, a middle finger part, a ring finger part and a little finger part. The index finger exoskeleton, the middle finger exoskeleton, the ring finger exoskeleton and the little finger exoskeleton each comprise a connecting rod, a far knuckle support, a transition connecting rod, a middle knuckle support, a transmission connecting rod, a driving connecting rod and a near knuckle support. The thumb exoskeleton comprises a thumb driving rod, a thumb transmission rod, a thumb connecting rod, a thumb near knuckle support, a thumb far knuckle support, a thumb motor, a thumb screw rod, a thumb sliding block, a thumb screw rod support, a thumb sliding block connecting rod, a thumb motor support and a thumb back platform. The whole device is light, low in cost and easy to assemble, and solves the problems that in an existing hand rehabilitation device, all fingers are not independent from one another, the bending angle is limited, fine actions are difficult to achieve, and cost is high.
Owner:UNIV OF SCI & TECH OF CHINA

Tendon rope parallel skillful under-driven bionic robot finger device

InactiveCN101804633AGood Ready Grab StanceImprove grasping anthropomorphismGripping headsGearingLittle fingerEngineering
The invention discloses a tendon rope parallel skillful under-driven bionic robot finger device, which belongs to the technical field of anthropomorphic robots. The device is provided with 5 independently-controlled fingers and 14 joint freedom degrees and driven by 10 motors, wherein the middle finger, the ring finger, the little finger and the index finger have the same structures and are in double-motor driven three-joint rotations; and the thumb is fixedly connected in a palm and is in double-motor driven two-joint rotation. The fingers have similar structures, and comprehensively achieve the special effect of combining variable primary configuration and adaptive grab of the fingers by using motors, tendon ropes and reset spring pieces. The device can flexibly bend the middle joint of the finger before grabbing to reach a stable anthropomorphic pre-bending posture and grab an object in an adaptive under-driven mode during grabbing. The device has the advantages of compact structure, high integration degree and appearance, size, form and action close to human hands, can stably grab and automatically adapt to the objects with different shapes and sizes, also can perform simple operation, and is suitable to be used as an output terminal of the anthropomorphic robot.
Owner:WUXI RES INST OF APPLIED TECH TSINGHUA UNIV +1

Bioelectrical impedance measuring apparatus

ActiveUS20110237926A1Easy to handleReliable and precise measuring value of impedanceDiagnostic recording/measuringSensorsHuman bodyBioelectrical impedance analysis
The present invention provides bioelectrical impedance measuring apparatus for determining composition data of a human body, the apparatus including a plurality of electrodes and measuring circuitry which inject, through two electrodes, alternating current into the body, and which determine, with two other electrodes on different limbs, the resulting voltages, and which determine therefrom the impedance of body segments. In one apparatus, two hand contact bodies are disclosed, each of which is shaped in such a manner and provided with two electrodes in such a manner that a user when contacting the hand contact bodies with his hands comes into contact with two electrodes for each hand at the respective hand contact body. Each hand contact body includes a hand seating surface for placement of a hand inner surface thereon, each hand seating surface includes an electrically insulating separating wall extending over a part of the length of the hand seating surface, the separating wall being adapted to project into the space between middle and ring finger when a hand is placed on the hand seating surface, and on both sides of the separating wall an electrode is included such that, when a hand is placed on the hand seating surface, one electrode comes into contact with the small finger and/or ring finger at the other electrode comes into contact with middle finger and/or index finger.
Owner:SECA AG
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products