Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

211 results about "Vital signs monitors" patented technology

There are several types of vital signs monitors, including blood pressure monitors and heart rate monitors. Monitors used for measuring levels of anesthesia administered to a patient are known as anesthesia gas monitors. Monitors used for detecting fetal heartbeats and irregularities of the heart is called a fetal heart rate monitor.

Vital Signs Monitor

A multi-parametric vital signs monitoring device configured for use as an ambulatory and a bedside monitor wherein the device can be patient-wearable and is battery powered. The monitoring device can be used with a charging cradle to provide power to the device in lieu of the battery as a power source for bedside applications, in which the cradle further serves as an intermediary device to enable a data link with a PC or other peripheral device. The monitoring device can include a wireless radio to enable bi-directional transfer of patient-related data to a separate remote station.
Owner:WELCH ALLYN INC

Implantable device for vital signs monitoring

An implantable medical device is provided for subcutaneous implantation within a human being. The implantable medical device includes a pair of electrodes for sensing electrical signals from the human being's heart. Electronic circuitry having digital memory is provided with the electronic circuitry designed to record the electrical signals from the heart. The electronics of the electronic circuitry are housed in a case having a tapered shape to facilitate implantation and removal of the implantable medical device.
Owner:ANGEL MEDICAL SYST +1

Wireless, internet-based medical-diagnostic system

A system for monitoring a patient's vital signs that features a vital-sign monitor including sensors for measuring from the patient at least one of the following vital-sign data: O2 saturation, blood pressure, electro-cardiogram, respirator rate, and blood glucose level. The system also includes a global positioning system that determines location-based data. A wireless transmitter, in electrical contact with the vital-sign monitor and global positioning system, receives the vital-sign and location-based data and wirelessly transmits these data through a conventional wireless network. A gateway software piece receives and processes the data from the wireless network and stores these data in a computer memory associated with a database software piece. The system also includes an Internet-based user interface that displays the vital sign data for both individual patients and care-providers.
Owner:SOTERA WIRELESS

Wireless, internet-based, medical diagnostic system

A system for monitoring a patient's vital signs that features a vital-sign monitor including sensors for measuring from the patient at least one of the following vital-sign data: O2 saturation, blood pressure, electrocardiogram, respirator rate, and blood glucose level. The system also includes a global positioning system that determines location-based data. A wireless transmitter, in electrical contact with the vital-sign monitor and global positioning system, receives the vital-sign and location-based data and wirelessly transmits these data through a conventional wireless network. A gateway software piece receives and processes the data from the wireless network and stores these data in a computer memory associated with a database software piece. The system also includes an Internet-based user interface that displays the vital sign data for both individual patients and care-providers.
Owner:TRIAGE DATA NETWORKS

Body-worn vital sign monitor

The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms / alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
Owner:SOTERA WIRELESS

Personal computer-based vital signs monitor

InactiveUS20060084878A1Quickly and accurately measureSimple and low-cost systemCatheterSensorsOptical ModuleBlood pressure
The invention provides a system for measuring blood pressure from a patient that includes: 1) an optical module featuring systems for measuring signals from the patient, serial communication, and power management; 2) an external computing device configured to attach to the optical module, supply power to the optical module, and receive information from the optical module through the system for serial communication; and 3) an algorithm, operating on the external computing device, that processes information received through the system for serial communication to determine the patient's blood pressure.
Owner:TRIAGE WIRELESS

Non-invasive body composition monitor, system and method

The invented non-invasive vital signs monitor is in a flexible, nominally flat planar form having integral gel electrodes, a sticky-back rear surface, an internal flex circuit capable of sensing, recording and playing out several minutes of the most recently acquired ECG waveform data and a front surface that includes an outplay port. The invented non-invasive body composition ‘risk’ monitor includes a measurement device for monitoring one or more variables including body fluid mass, dehydration, respiratory rate, blood pressure, bio-impedance, cardiography such as cardiac output, and body conformation parameters. The risk monitor may be provided in a lightweight carrying case into which the vital signs monitor plugs. Thus the two monitors may be independent or they may be integrated into one portable, non-invasive device that can convey important patient data to / from a remote patient medical data center via wireless telemetry for oversight, treatment and possible intervention by a physician.
Owner:RIGHT CORP

Body composition, circulation, and vital signs monitor and method

The invented non-invasive vital signs monitor is in a flexible, nominally flat planar form having integral gel electrodes, a sticky-back rear surface, an internal flex circuit capable of sensing, recording and playing out several minutes of the most recently acquired ECG waveform data and a front surface that includes an outplay port. The invented non-invasive body composition ‘risk’ monitor includes a measurement device for monitoring one or more variables including body fluid mass, dehydration, respiratory rate, blood pressure, bio-impedance, cardiography such as cardiac output, and body conformation parameters. The risk monitor may be provided in a lightweight carrying case into which the vital signs monitor plugs. Finally, a lightweight portable probe or transducer containing a transmissive or reflective electro-optical emitter and receptor in the infrared spectrum is fitted on a subject's finger or toe. Associated electronics energize and monitor the probe, detect cardio-rhythmic fluctuations therefrom, and process digital data over a prescribed window to produce a non-invasive, qualitative or quantitative measure of the subject's circulation. In accordance with one embodiment of the invention, a simple tri-color LED array is used to indicate the subject's circulation as being normal, reduced, or borderline. Thus the vital signs, bio-impedance, and circulation monitors may be independent or they may be integrated into one portable, non-invasive device that can concurrently monitor and locally display or remotely convey important patient data including circulation data to a local subject or physician or to / from a remote patient medical data center via wireless telemetry for oversight, treatment and possible intervention by a remote physician.
Owner:SEMLER SCI

Hand-held vital signs monitor

The invention features a vital sign monitor that includes: 1) a hardware control component featuring a microprocessor that operates an interactive, icon-driven GUI on an LCD; and, 2) a sensor component that connects to the control component through a shielded coaxial cable. The sensor features: 1) an optical component that generates a first signal; 2) a plurality electrical components (e.g. electrodes) that generate a second signal; and, 3) an acoustic component that generates a third signal. The microprocessor runs compiled computer code that operates: 1) the touch panel LCD; 2) a graphical user interface that includes multiple icons corresponding to different software operations; 3) a file-management system for storing and retrieving vital sign information; and 4) USB and short-range wireless systems for transferring data to and from the device to a PC.
Owner:SOTERA WIRELESS

Device, system and method for monitoring vital signs

A monitoring device, method and system are disclosed herein. The monitoring device is capable of determine when a user's wrist is at rest using a motion sensor disposed within a wrist module that is attached to the user's wrist. When at rest, the monitoring device utilizes a vital sign monitor to determine a plurality of vital signs of the user. The vital sign monitor preferably comprises a light source and photodetector in communication with a pulse-oximetry circuit. The motion sensor is preferably an accelerometer.
Owner:SOTERA WIRELESS

Body-worn vital sign monitor

The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms / alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
Owner:SOTERA WIRELESS

Vital sign monitor for measuring blood pressure using optical, electrical and pressure waveforms

A method and apparatus for continuous measurement of blood pressure, based on pulse transit time, which does not require any external calibration. This technique, referred to herein as the ‘composite technique’, is carried out with a body-won sensor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of disposable sensors, typically placed on the patient's right arm and chest, connect to the body sensor and measure a time-dependent electrical waveform, optical waveform, and pressure waveform. The disposable sensors typically include an armband that features an inflatable bladder coupled to a pressure sensor, at least 3 electrical sensors (e.g. electrodes), and an optical sensor (e.g., a light source and photodiode) attached to a wrist-worn band.
Owner:SOTERA WIRELESS

Body-worn vital sign monitor

The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
Owner:SOTERA WIRELESS

Vital-signs monitor with encapsulation arrangement

A vital-signs monitoring device is disclosed. The vital-signs monitor includes a sensor that measures a physiological parameter of a patient, a circuit assembly containing vital-signs monitoring circuitry that analyzes the sensor measurements to generate vital sign signals, and a housing. The housing is designed to be worn by a patient and encapsulates the circuit assembly such that moisture and particulate matter is prevented from reaching the circuit assembly through the housing.
Owner:CAREFUSION 303 INC

Wearable Vital Signs Monitor

A method and monitor for monitoring vital signs. In one embodiment, the vital signs monitor includes a housing sized and shaped for fitting adjacent the ear of a wearer and an electronic module for measuring vital signs. The electronic module for measuring vital signs is located within the housing and includes a plurality of vital signs sensing modules in communication with a processor. The plurality of sensing modules includes at least two of the modules selected from the group of a ballistocardiographic (BCG) module, a photoplethysmographic (PPG) module, an accelerometer module, a temperature measurement module, and an electrocardiographic (ECG) module. In one embodiment, the processor calculates additional vital signs in response to signals from the plurality of vital signs sensing modules.
Owner:ROBERT F DUDLEY AS TRUSTEE OF THE QUANTTUS LIQUIDATING TRUST +1

Body-worn vital sign monitor

The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
Owner:SOTERA WIRELESS

Vital signs monitor with patient entertainment console

A system and device for monitoring at least one physiological parameter of a patient and selectively presenting entertainment media and at least one physiological parameter on a common display. The system and device comprises a patient monitor disposed to collect at least one patient physiological signal and processing at least one physiological signal to obtain at least one physiological parameter. A patient entertainment console with a processor programmed to receive at least one physiological parameter and programmed to control the patient entertainment console to selectively present entertainment media and at least one physiological parameter upon receiving a signal from an override means.
Owner:GENERAL ELECTRIC CO

Blood-pressure monitoring device featuring a calibration-based analysis

A monitoring device (10), method and system are disclosed herein. The monitoring device (10) utilizes a vital sign monitor (16) to determine a plurality of vital signs of the user. The vital sign monitor (16) preferably comprises a light source (3) and photodetector (31) in communication with a pulse oximetry circuit (35).
Owner:TRIAGE WIRELESS

Body-worn vital sign monitor

The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms / alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
Owner:SOTERA WIRELESS

Body-worn vital sign monitor

The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms / alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
Owner:SOTERA WIRELESS

Process and System For Systematic Oxygenation and Renal Preservation During Retrograde Perfusion of the Ischemic Kidney

A delivery system to provide end organ oxygenation and even systematic oxygenation in the face of ischemic result. The deliver system including a retrograde oxygenation and perfusion stent. The stent employing at least two and possibly more channels to allow flow of the perfusate from the device to the renal pelvis then to a back out to a collection apparatus. The stent may include various vital sign monitors, such as a renal pressure monitor, temperature monitor, and even an oxygenation monitor. The stent may include an anchoring device to allow the stent to be anchored into the renal pelvis in a temporary way during the retrograde oxygenation process.
Owner:HUMPHREYS MITCHELL R

Vital signs monitor using an optical ear-based module

The invention provides a system for measuring blood pressure from a patient that includes: 1) an optical module configured to be worn on the patient's ear and comprising at least one optical source and a photodetector; 2) a calibration source configured to make a blood pressure measurement; and, 3) a processing module configured to: i) receive a first signal from the optical module; ii) receive a second signal from the calibration source; iii) process the first and second signals to generate a calibration table; and iv) receive a third signal from the optical module and compare it to the calibration table to determine the patient's blood pressure.
Owner:TRIAGE WIRELESS

Vital sign monitor system and method

A portable vital sign monitor is provided which has a palm vital sign monitor unit carried by the patient, the unit comprising an optical probe positioned in the palm of the patient which measures at least one vital sign including SpO2 and pulse rate but not exclusively and only those vital signs. The detected vital signs are stored in memory and transmitted by wireless inter-connection to a communication base unit, which transmits the vital sign by a phone line, LAN, Internet, serial interface or the like to a data processing device / centre.
Owner:TELEMEDIC

Body-worn vital sign monitor

The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
Owner:SOTERA WIRELESS
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products