Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

38results about How to "Less motion" patented technology

Mask construction for cardiac subtraction

To provide an improved method for achieving DSA images where the effect of residual motions in cardiac DSA during the perfusion phase is reduced and in order to display subtracted images containing less motion artefacts, a method of performing digital subtraction angiography DSA in an imaging apparatus comprises the steps of generating a first image sequence of mask images (10) of a subject to be examined, generating at least one first contrast image (22) at a first phase (16) whereby in the first contrast image part of the subject has a different contrast than in said first image sequence, subtracting the mask images (10) from the at least one first contrast image (22) generating a first DSA image sequence (24), subtracting the DSA images of the first DSA image sequence (24) from the first contrast image (22) within the first phase (16) generating a sequence of extended mask images (32); generating a second contrast image (34) with the imaging system at a second phase (18), said second phase (18) being separated from the first phase (16) by a predetermined phase dividing time limit (20), subtracting the images of the sequence of the extended mask images (32) from the second contrast image (34) generating a second DSA image sequence (38), displaying the second DSA image sequence (38) on a display (28).
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Mask construction for cardiac subtraction

To provide an improved method for achieving DSA images where the effect of residual motions in cardiac DSA during the perfusion phase is reduced and in order to display subtracted images containing less motion artefacts, a method of performing digital subtraction angiography DSA in an imaging apparatus comprises the steps of generating a first image sequence of mask images (10) of a subject to be examined, generating at least one first contrast image (22) at a first phase (16) whereby in the first contrast image part of the subject has a different contrast than in said first image sequence, subtracting the mask images (10) from the at least one first contrast image (22) generating a first DSA image sequence (24), subtracting the DSA images of the first DSA image sequence (24) from the first contrast image (22) within the first phase (16) generating a sequence of extended mask images (32); generating a second contrast image (34) with the imaging system at a second phase (18), said second phase (18) being separated from the first phase (16) by a predetermined phase dividing time limit (20), subtracting the images of the sequence of the extended mask images (32) from the second contrast image (34) generating a second DSA image sequence (38), displaying the second DSA image sequence (38) on a display (28).
Owner:KONINKLIJKE PHILIPS ELECTRONICS NV

Fuel injection system for an internal combustion engine

The fuel injection system has a high-pressure fuel pump (10) and a fuel injection valve (12) for a cylinder of the engine. The high-pressure fuel pump (10) has a pump work chamber (22), and the fuel injection valve (12) has an injection valve member (28) by which at least one injection opening (32) is controlled and which is movable in an opening direction (29) counter to the force of a closing spring (44); the closing spring (44) is braced on one end on the injection valve member (28) and on the other end on a displaceable storage piston (50) that is acted upon, on its side remote from the closing spring (44), by the pressure prevailing in the pump work chamber (22). The storage piston (50) is movable into a storage chamber (55) counter to the force of the closing spring (44), and the deflection stroke motion of the storage piston (50) into the storage chamber (55) is limited by a stop (54). A shaft part (52), which has one shaft portion (74) of smaller cross section disposed in an outset position in a connecting bore (53) and one shaft portion (72) of larger cross section disposed outside the connecting bore (53) in the storage chamber (55), is movable with the storage piston (50), and upon the deflection stroke motion of the storage piston (50) into the storage chamber (55), the shaft portion (72) of larger cross section dips into the connecting bore (53).
Owner:ROBERT BOSCH GMBH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products