Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

218 results about "Clamp capacitor" patented technology

Non-complementary flyback active clamp converter

The invention discloses a non-complementary flyback active clamp converter. The non-complementary flyback active clamp converter comprises a transformer, a main switching tube, a clamp switching tube, a clamp capacitor and a drive module. The drive module outputs main drive signals to the drive end of the main switching tube, and the driving signals are used for controlling the main switching tube to be alternately switched on and switched off. The drive module outputs clamp drive signals to the drive end of the clamp switching tube. The clamp drive signals and the main drive signals have the same period. Each period comprises a first pulse signal which is generated when the switching-on state of the main switching tube is converted to the switching-off state, a second pulse signal which is generated when the main switching tube is in the switching-off state, and a signal which is generated at the remaining time and used for controlling the switching-on and the switching-off of the clamp switching tube, wherein the first pulse signal and the second pulse signal are independent of each other and both used for controlling the switching-on and the switching-off of the clamp switching tube. By the adoption of the non-complementary flyback active clamp converter, it is guaranteed that a high-frequency current generated when the clamp capacitor is charged fully flows through the clamp switching tube and avoids a backward diode of the clamp switching tube.
Owner:MORNSUN GUANGZHOU SCI & TECH

Switching power supply apparatus

A switching power source apparatus can reduce the size of a transformer and realize the zero-voltage switching of a switch. The apparatus is compact, highly efficient, and low in noise. The apparatus has a series circuit connected to each end of a DC power source (Vdc1) and including a primary winding (5a) of a transformer (T) and a main switch (Q1), a rectifying-smoothing circuit to rectify and smooth a voltage that is outputted from a secondary winding (5b) when the main switch (Q1) is turned on, a series circuit connected to each end of the primary winding (5a) and including an auxiliary switch (Q2) and a clamp capacitor (C1), a series circuit connected to each end of the main switch (Q1) and including a diode (Dx1) and a snubber capacitor (Cx), a series circuit connected to a node between the diode (Dx1) and the snubber capacitor (Cx) and a node between the auxiliary switch (Q2) and the clamp capacitor (C1) and including an auxiliary winding (5x) and a diode (Dx2), and a control circuit (10) to alternately turn on/off the main switch (Q1) and auxiliary switch (Q2). When the main switch (Q1) is turned on, the snubber capacitor (Cx) is discharged through the auxiliary winding (5x) to the clamp capacitor (C1). When the main switch (Q1) is turned off, the snubber capacitor (Cx) is charged, to relax the inclination of a voltage increase of the main switch (Q1).
Owner:SANKEN ELECTRIC CO LTD

Mixed clamping back-to-back multi-level AC-DC-AC switching circuit

The invention discloses a mixed clamping back-to-back multi-level AC-DC-AC switching circuit. The mixed clamping back-to-back multi-level AC-DC-AC switching circuit comprises two groups of multi-level switching circuits and a direct current bus capacitor link connected with the two groups of multi-level switching circuits; and the level number of the direct current bus capacitor link is more than or equal to 4. By the mixed clamping back-to-back multi-level AC-DC-AC switching circuit, the dynamic self-balance between all direct current bus capacitors and clamping capacitors can be realized and equal capacitor voltage can be obtained so that the champing capacitors and the direct current bus capacitors complete multi-level boost output and a good condition for the expansion of the capacitance of direct current bus capacitors is created at the same time. The mixed clamping back-to-back multi-level AC-DC-AC switching circuit bears a high-power high-voltage load on the premise of guaranteeing system reliability and good harmonic output characteristics, is flexible in control, quite low in loss, has efficient performance, can realize bidirectional flow and mutual control compensation of reactive power and active power, and is very suitable for alternating current speed regulation or a power grid interconnection technique of different distributed power generating systems.
Owner:ZHEJIANG UNIV +1

High-efficiency and low-cost forward-flyback DC-DC (direct current-direct current) converter topology

The invention relates to a high-efficiency and low-cost forward-flyback DC-DC (direct current-direct current) converter topology. The forward-flyback DC-DC converter topology comprises a transformer, a main switch tube, a clamp circuit, a first rectification switch tube, a second rectification switch tube, an LC resonance circuit and an output capacitor, wherein a primary winding of the transformer is connected in series with the main switch tube between a first input end and a second input end; the clamp circuit consisting of a clamp capacitor and a clamp switch tube which are connected in series is connected in parallel with the primary winding or the main switch tube; a secondary winding of the transformer comprises a forward winding and a flyback winding; one end making the current flow into the primary winding is a dotted end of the primary winding; the secondary side of the transformer is connected in a manner that: the dotted end of the forward winding is connected to the first output terminal through the first rectification switch tube, and the dotted end of the flyback winding is connected to the second output terminal through the second rectification switch tube; the LC resonance circuit is connected to the first output terminal and the second output terminal and the unlike ends of the forward winding and the flyback winding so as to switch on or switch off the first rectification switch tube and the second rectification switch tube at zero current; and the output capacitor is connected between the first output terminal and the second output terminal.
Owner:SANTAK ELECTRONICS SHENZHEN

Soft switching three-phase gird-connected inverter additionally provided with freewheeling path

The invention discloses a soft switching three-phase gird-connected inverter additionally provided with a freewheeling path, which comprises an inverter direct current power supply, a three-phase bridge arm formed by six full-control master switches with antiparallel diodes, and output filter inductors respectively connected between the midpoint of each phase of the bridge arm and an alternating current grid, wherein the three-phase bridge arm is connected with a full-control switch with an antiparallel diode, the full-control switch and the six master switches of the three-phase bridge arm are respectively connected with a capacitor in parallel, an auxiliary switch with an antiparallel diode and a serial branch of a clamp capacitor are accessed between the inverter direct current power supply and a direct current bus of the three-phase bridge arm, and a resonance inductor Lr is bridged at two ends of the serial branch, and the auxiliary switch is connected in parallel with the capacitor. The invention is simple in structure, can suppress the reverse recovery of the diodes, and reduces the electromagnetic interference. All switches of the inverter realize zero-voltage switching-on, thus the inverter has the advantages of little switching loss and high circuit efficiency. The inverter can realize control of power factors and harmonic waves for output grid-connected current, and can be used in a grid-connected inverter in various power supplies.
Owner:ZHEJIANG UNIV

Hybrid-clamped three-electric-level three-phase four-wired photovoltaic system based on 3D-SPWM (three-dimensional sinusoidal pulse width modulation)

The invention relates to a hybrid-clamped three-electric-level three-phase four-wired photovoltaic system based on 3D-SPWM (three-dimensional sinusoidal pulse width modulation). By the use of a 3D-SPWM control method, system leak current is reduced effectively, neutral-point potential balance is guaranteed, balance of outputting three-phase voltage by the photovoltaic system in independent operation is guaranteed, and balance of three-phase grid-connecting current in grid-connecting operation is guaranteed. In addition, neutral current can be lowered effectively by controlling zero-sequence component. The photovoltaic system comprises three-phase bridge arms connected in parallel. Each bridge arm comprise four IGBTs (insulated gate bipolar transistors) connected in series, a neutral point of each phase bridge arm is connected with a corresponding resistor through a filter, and the resistors are grounded. A pair of a capacitor C1 and a capacitor C2 in series connection are connected at an input end of each bridge arm in parallel, the capacitors C1 and the capacitors C2 are connected with an acquisition photovoltaic array. A pair of diodes are connected between the first IGBT and the fourth IGBT of each bridge arm in series,and neutral points of the capacitors C1 and the capacitors C2 are grounded. In addition, clamped capacitors Cxi are connected on each pair of diodes in parallel, wherein i is equal to a, b and c. The IGBTs are controlled by a control circuit in a 3D-SPWM manner to balance potential at the neutral points.
Owner:SHANDONG UNIV

Switching power source apparatus

A switching power source apparatus can reduce the size of a transformer and realize the zero-voltage switching of a switch. The apparatus is compact, highly efficient, and low in noise. The apparatus has a series circuit connected to each end of a DC power source (Vdc1) and including a primary winding (5a) of a transformer (T) and a main switch (Q1), a rectifying-smoothing circuit to rectify and smooth a voltage that is outputted from a secondary winding (5b) when the main switch (Q1) is turned on, a series circuit connected to each end of the primary winding (5a) and including an auxiliary switch (Q2) and a clamp capacitor (C1), a series circuit connected to each end of the main switch (Q1) and including a diode (Dx1) and a snubber capacitor (Cx), a series circuit connected to a node between the diode (Dx1) and the snubber capacitor (Cx) and a node between the auxiliary switch (Q2) and the clamp capacitor (C1) and including an auxiliary winding (5x) and a diode (Dx2), and a control circuit (10) to alternately turn on / off the main switch (Q1) and auxiliary switch (Q2). When the main switch (Q1) is turned on, the snubber capacitor (Cx) is discharged through the auxiliary winding (5x) to the clamp capacitor (C1). When the main switch (Q1) is turned off, the snubber capacitor (Cx) is charged, to relax the inclination of a voltage increase of the main switch (Q1).
Owner:SANKEN ELECTRIC CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products