Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

1888 results about "Soft switch" patented technology

Zero-voltage switch flyback-type DC-DC power supply conversion device

The invention relates to a DC-DC power supply conversion device, in particular to a zero-voltage switch (ZVS) flyback-type DC-DC power supply conversion device with efficient conversion, efficient light-load conversion and low standby power consumption. An auxiliary switch and an absorption capacitor are additionally arranged on the flyback circuit; the auxiliary switch and the absorption capacitor are connected in series so as to form an auxiliary branch circuit; the auxiliary branch circuit can be connected in parallel to the two ends of the primary winding of a transformer or alternatively connected in parallel to the two ends of a primary-side switch; and the auxiliary switch is conductive for a determined period of time before the primary-side switch is conductive. Compared with the prior art, the energy of the circuit leakage inductor can be absorbed and transferred to the output terminal and a soft switch for realizing the primary-side switch, so that the invention can greatly improve the circuit efficiency; the parasitic oscillation caused by the leakage inductor can be suppressed, so that the EMI (electromagnetic interference) characteristics of the circuit can be improved; and the circuit can be controlled more easily, thereby improving the light-load circuit efficiency and reducing the idle-load energy loss.
Owner:DELTA ELECTRONICS SHANGHAI CO LTD

Driving circuit and driving method applied to flyback-type converter and quasi-resonant soft-switching flyback-type converter applying same

The invention provides a driving circuit and a driving method applied to a flyback-type converter and a quasi-resonant soft-switching flyback-type converter applying the same. According to a driving circuit applied to the flyback-type converter, differential coefficient of the drain-source voltage of a main power switch tube in the flyback-type converter is worked out by a differential circuit, thus leading the time when the drain-source voltage achieves valley floor to correspond to the time when the differential voltage passes the zero point in positive direction. A valley floor voltage detecting circuit is connected with the differential circuit and receives a differential voltage signal; when the drain-source voltage of the main power switch tube achieves the valley floor, a valley floor control signal is output, thus controlling the driving circuit to drive the main power switch tube, and further exactly realizing the aim of conducting the valley floor of the main power switch tube. By adopting the driving circuit, the aim of controlling a quasi-resonant soft switch of the main power switch tube is realized precisely, the driving circuit of the flyback-type converter is optimized so that the controlling effect and the reliability are greatly improved, and the realizing cost is reduced.
Owner:SILERGY SEMICON TECH (HANGZHOU) CO LTD

Control method applied to active-clamp flyback miniature photovoltaic grid-connected inverter device

The invention relates to a control method which can be applied to an active-clamp flyback miniature photovoltaic grid-connected inverter device. The active-clamp flyback miniature photovoltaic grid-connected inverter device comprises a flyback converter and a power frequency polarity conversion circuit. In the device, a current reference is used for controlling a flyback primary-side current peak value so that the device can output a half-wave sinusoidal current, and the output voltage is clamped by a grid voltage. When the instantaneous power is lower, a constant frequency current discontinuous mode in combined with a variable frequency current critical continuous mode is adopted in the flyback control method. When the flyback converter works in a variable frequency current critical discontinuous mode, an auxiliary switching tube can be conducted for a period of time when the secondary-side current of the flyback converter reaches zero, the conduction time can be accurately controlled by a digital chip, thus realizing the leakage inductance energy feedback and the soft switch of a master switching tube under the condition of wide-range output voltages and different instantaneous powers and greatly improving the efficiency under the condition of full loads.
Owner:ALTENERGY POWER SYST

Dynamic wireless charging apparatus and parameter acquiring method thereof

The invention discloses a dynamic wireless charging apparatus and a parameter acquiring method thereof. The dynamic wireless charging apparatus comprises an energy emitting module and an energy receiving module. The energy emitting module comprises a high-frequency inversion unit, an LC filter unit, a first compensation unit, and a power emitting coil which are successively connected. The high-frequency inversion unit converts DC power into high-frequency AC power. After the high-frequency AC power is adjusted by the LC filter unit and the first compensation unit, energy is emitted in a high-frequency magnetic field coupling mode. The energy receiving module comprises a power receiving coil, a second compensation unit, and an uncontrolled rectification unit which are successively connected, and converts received high-frequency AC power into DC power supplied to a load. The dynamic wireless charging apparatus may automatically adjust the current of a primary-side power coil according to the mutual inductance coupling degree of the power coil so as to obtain a characteristic maintaining stable output power, is suitable for dynamic wireless charging application occasions with a wide bias, and has high transmission efficiency and a soft switch characteristic. In addition, compensation topology provides a primary side inversion power supply with a zero-load current-limiting protection function.
Owner:HUAZHONG UNIV OF SCI & TECH

Deinterlacing device and method

A deinterlacing device and method for improving a quality of image after interpolation without a complicated circuit at the time when an interlacing screen is converted into a progressive type screen is disclosed. The deinterlacing device includes: a field memory for storing m continuous field data containing an nth field data and positioned before and after the nth field data on the basis of the nth field data of a plurality of field data for output image; a motion determination part for detecting picture element values and brightness profile pattern difference values in specific lines existing among the field data stored in the field memory to calculate a motion value of a moving picture; a spatial interpolator for calculating a variation direction of picture element values on an area to be interpolated in the nth field data to output a direction value; a time interpolator for averaging the picture element values on the area to be interpolated in a previous field data of the nth field data and the picture element values on the area to be interpolated in a next field data of the nth field data to output the picture element average value; and a soft switch for mixing the direction value outputted from the spatial interpolator and the picture element average value outputted from the time interpolator, based upon the motion value determined in the motion determination part to output the mixed result.
Owner:LG ELECTRONICS INC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products