Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3207 results about "Positive direction" patented technology

Driving circuit and driving method applied to flyback-type converter and quasi-resonant soft-switching flyback-type converter applying same

The invention provides a driving circuit and a driving method applied to a flyback-type converter and a quasi-resonant soft-switching flyback-type converter applying the same. According to a driving circuit applied to the flyback-type converter, differential coefficient of the drain-source voltage of a main power switch tube in the flyback-type converter is worked out by a differential circuit, thus leading the time when the drain-source voltage achieves valley floor to correspond to the time when the differential voltage passes the zero point in positive direction. A valley floor voltage detecting circuit is connected with the differential circuit and receives a differential voltage signal; when the drain-source voltage of the main power switch tube achieves the valley floor, a valley floor control signal is output, thus controlling the driving circuit to drive the main power switch tube, and further exactly realizing the aim of conducting the valley floor of the main power switch tube. By adopting the driving circuit, the aim of controlling a quasi-resonant soft switch of the main power switch tube is realized precisely, the driving circuit of the flyback-type converter is optimized so that the controlling effect and the reliability are greatly improved, and the realizing cost is reduced.
Owner:SILERGY SEMICON TECH (HANGZHOU) CO LTD

Method, apparatus, and system for driving LED's

A method and apparatus for driving LED's is disclosed, comprising the steps of receiving a desired intensity value, wherein the desired intensity value represents the desired intensity for the LED's; generating a first switching control signal, wherein the first switching control signal is a pulse width modulated signal whose duty cycle is based on the desired intensity value; switching the LED's on and off based on the first switching control signal, wherein the switching takes place when the desired intensity value is less than a first desired intensity value threshold; generating a desired constant current value based on the desired intensity value, wherein the desired constant current value represents the value of the desired constant current to drive the LED's; determining an actual constant current value, wherein the actual constant current value represents the value of the actual constant current driving the LED's; comparing the actual constant current value with the desired constant current value; and adjusting the output of the primary drive of the LED's so that the actual constant current value is equal to the desired constant current value. A system for providing LED backlighting of a display is also disclosed, comprising a first constant current source driver, wherein the constant current source driver comprises a primary drive and a step-up circuit; a first series connection of LED's, wherein the LED's are driven by the first constant current driver; and wherein the first constant current source provides a forward voltage of 42 volts or greater to drive the first series connection of LED's.
Owner:APPLIED CONCEPTS

Shift register, grid driving circuit and display device

ActiveCN102945651ARealize bi-directional scanningReverse scan implementationStatic indicating devicesDigital storageDriver circuitShift register
The invention discloses a shift register, a grid driving circuit and a display device. The shift register is mainly characterized in that the shift register forwardly outputs output signals of each stage of shift register unit through a signal output terminal of each stage of shift register unit according to forward scanning signals, and reversely outputs output signals of each stage of shift register unit through the signal output terminal of each stage of shift register unit according to reverse scanning signals; each stage of shift register unit comprises a forward scanning switch module used for connecting a pull-up driving module under the control of the forward scanning signals, outputting first signals to a pull-up node and outputting second signals to a second pull-down module, a reverse scanning switch module used for connecting the pull-up driving module under the control of the reverse scanning signals, outputting the second signals to the pull-up node and outputting the first signals to the second pull-down module, the pull-up driving module, a pull-up module, a pull-down driving module, a first pull-down module and the second pull-down module. The forward scanning switch module and the reverse scanning switch module are utilized to control different signals to be input into different modules, so that forward scanning can be realized.
Owner:BOE TECH GRP CO LTD +1

User interface methods and apparatus for controlling the visual display of maps having selectable map elements in mobile communication devices

One illustrative method for use in controlling user interface operation of a communication device when visually displaying a map involves the steps of causing a viewable map region of the map to be visually displayed in a display, the viewable map region having a plurality of selectable map elements; maintaining a list of element identifiers which includes element identifiers corresponding to the selectable map elements in the viewable map region, each element identifier being associated with a pair of x, y coordinates for visual display; controlling end user selection of the selectable map elements via a positioning mechanism in left and right directions in accordance with a numeric order of the x-coordinates; controlling end user selection of the selectable map elements via the positioning mechanism in up and down directions in accordance with a numeric order of the y-coordinates; and repeating the acts of causing, maintaining, and controlling for a next viewable map region of the map having a next plurality of selectable map elements. The end user selection may be controlled specifically by monitoring to detect a forward (or reverse) direction positioning signal from the positioning mechanism; in response to detecting the forward (or reverse) direction positioning signal: causing a cursor in the display to be moved in a forward (or reverse) direction so as to select a next (or previous) selectable map element in the viewable map region, but if a last (or first) selectable map element in the viewable map region is currently selected when the forward (or reverse) direction positioning signal is detected, causing the viewable map region of the map to be panned in the display in the forward (or reverse) direction.
Owner:MALIKIE INNOVATIONS LTD

Current differential protection method for smart distribution network

The invention relates to a current differential protection method for a smart distribution network, which comprises: mounting current transformers and smart distribution terminals at the positions of all switches in the smart distribution network, wherein each smart terminal serves as an agent, the agents are connected with one another through an optical fiber Ethernet, and the positive directions of all currents is the direction from a system power supply to the end of a circuit; automatically detecting the working state of a communication network through the agents, and determining if to perform current differential protection; when the communication network fails to work normally, applying the conventional three-stage current protection; when the communication network works normally, applying current differential protection and using the current differential protection as main protection; and allowing a local agent to compute a differential current and a braking current according to the local switching current detected by the local agent and downstream switching current transmitted by a downstream agent and determine if the protection is actuated. The overcurrent protection is local backup protection, and the protection of an upstream agent is local remote backup protection.
Owner:SHANDONG UNIV +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products