Patents
Literature
Hiro is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Hiro

684results about How to "Decrease in luminance" patented technology

Liquid Crystal Display Device and Driving Method Thereof

In a display device including a backlight and a display panel, the area of the backlight is divided into a plurality of unit regions; the display panel includes pixels which are larger in number than the unit regions; a frame rate of image data input to the device is converted to perform display while part of the unit regions in which black is displayed is in a non-light emission state; and the driving frequency of the backlight is converted in accordance with the display.
Owner:SEMICON ENERGY LAB CO LTD

Light emitting device and production system of the same

To provide a light emitting device without nonuniformity of luminance, a correcting circuit for correcting a video signal supplied to each pixel to a light emitting device. The correcting circuit is stored with data of a dispersion of a characteristic of a driving TFT among pixels and data of a change over time of luminance of a light emitting element. Further, by correcting a video signal inputted to the light emitting device in conformity with a characteristic of the driving TFT of each pixel and a degree of a deterioration of the light emitting element based on the over-described two data, nonuniformity of luminance caused by a deterioration of an electroluminescent layer and nonuniformity of luminance caused by dispersion of a characteristic of the driving TFT are restrained.
Owner:SEMICON ENERGY LAB CO LTD

Semiconductor device

A display device includes a pixel portion in which a pixel is arranged in a matrix, the pixel including an inverted staggered thin film transistor having a combination of at least two kinds of oxide semiconductor layers with different amounts of oxygen and having a channel protective layer over a semiconductor layer to be a channel formation region overlapping a gate electrode layer and a pixel electrode layer electrically connected to the inverted staggered thin film transistor. In the periphery of the pixel portion in this display device, a pad portion including a conductive layer made of the same material as the pixel electrode layer is provided. In addition, the conductive layer is electrically connected to a common electrode layer formed on a counter substrate.
Owner:SEMICON ENERGY LAB CO LTD

Display apparatus and display control method

ActiveUS20050068270A1Peak luminance can be increasedDisplay luminance can be enhancedCathode-ray tube indicatorsInput/output processes for data processingDriven elementLight emission
The present invention comprises: a display unit having a plurality of pixels arranged therein, each pixel including an organic EL element 24, a switching TFT, and a drive TFT; a data signal drive circuit for receiving image data for each frame period and outputting an image signal based on the image data; a scanning signal drive circuit for outputting a scanning signal for controlling a timing at which the switching element of each of the plurality of pixels receives the image signal; and a current source (a light emission power supply unit and a cathode potential control circuit together) for outputting a current supplied to the light emitting unit of each of the plurality of pixels through its drive element; wherein the current source modulates the value of the output current within each frame period.
Owner:SAMSUNG DISPLAY CO LTD +1

Display device and method of driving the same

The present invention solves the motion blur of moving images in hold-type display devices. An amount of a moving image is detected from image data included in frames and an image at the intermediate state between an image of the current frame and an image of the next frame is made as an interpolation image. Thus, the movement of the image can follow the movement of human eyes and the luminance of the interpolation image is changed, and thus, display can be made close to pseudo impulse type display. In this manner, hold-type display devices without motion blur and methods of driving the hold-type display devices can be provided.
Owner:SEMICON ENERGY LAB CO LTD

Thermal Control for LED Backlight

A backlighting system comprising: a controller; at least one luminaire comprising a plurality of LEDs; and at least one thermal sensor in communication with the controller, the controller being operative to control the luminance of the at least one luminaire responsive to the at least one thermal sensor. Preferably, the control of the luminance comprises: in the event that a temperature indication responsive to an output of the at least one thermal sensor is greater than a first pre-determined maximum, reducing the luminance of at least one of the at least one luminaire.
Owner:MICROSEMI

Liquid Crystal Display Device and Driving Method Thereof

To provide a hold-type display device without a problem of motion blur and a driving method thereof. The length of a period for displaying a blanking image in one frame period is controlled in accordance with a control parameter showing the degree of motion blur, and the level of a signal supplied to a display element is changed in accordance with the length of the period for displaying the blanking image. Accordingly, the hold-type display device without a problem of motion blur and the driving method thereof can be provided.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display device

A liquid crystal display apparatus having an amplitude detecting unit for detecting an amplitude of a supplied video signal; a liquid crystal display for displaying an image on a main surface based on the video signal; a backlight for giving off light with a luminance which can be freely set from the back surface of the liquid crystal display to the main surface; and a luminance setting unit for variably setting the luminance of the backlight based on the amplitude detected by the amplitude detecting unit.
Owner:SONY CORP

Method for driving liquid crystal display device

In a period Tin, p-th input image data (p is a positive integer) and (p+1)th input image data are input to a liquid crystal display device. In a period T, i-th original image data (i is a positive integer) and (i+1)th original image data are generated based on the input image data. J number of sub-images (J is an integer equal to or more than 3) are generated based on the i-th original image data. In the period T, the J number of sub-images are sequentially displayed. At least one of the i-th original image data and the (i+1)th original image data is in an intermediate state between the p-th input image data and the (p+1)th input image data. Each of the sub-images exhibits one of first brightness and second brightness. At least one sub-image among the J number of sub-images is different from the other sub-images.
Owner:SEMICON ENERGY LAB CO LTD

Active-matrix type display device

A display device is provided which is capable of controlling luminance of a pixel by a bias voltage of a light emitting device making up the pixel to change a current that flows through the light emitting device.EL (ElectroLuminescent) devices, TFTs, data lines, scanning lines, and variable bias lines are disposed in a matrix form. A bias voltage control circuit, in response to judging information fed from a judging circuit, outputs control information to a variable voltage generating circuit. The variable voltage generating circuit, in response to the control information, controls currents that are passed through the variable bias line to the EL device so that the EL device emits light at a value of the luminance corresponding to the fed current.
Owner:RENESAS ELECTRONICS CORP

Method of displaying three-dimensional image data and an apparatus of processing three-dimensional image data

A method is provided that includes receiving a three-dimensional (3D) image signal, generating image data from the 3D image signal, wherein said image data includes a plurality of left image data and a plurality of right image data, configuring the generated 3D image data to a 3D format, wherein the configured 3D image data includes black data and displaying the configured 3D image data at an output frequency, wherein the output frequency is synchronized with a shutter glasses.
Owner:LG ELECTRONICS INC

White point adjusting method, color image processing method, white point adjusting apparatus and liquid crystal display device

A white point adjusting apparatus is provided to adjust an achromatic color level for an input video signal including a plurality of color signals, and display an adjusted image on a liquid crystal module. This adjusting apparatus comprises: a first table for setting a white point by deciding an offset quantity of at least one color signal from a highest gray level for each color temperature; a second table for setting an offset quantity of the color signal to converge a halftone white point for each color temperature set by the first table; and a white point adjusting unit for adding the offset quantities set by the first and second tables and to the input video signal.
Owner:AU OPTRONICS CORP

Display device

A display device includes a pixel portion in which a pixel electrode layer is arranged in a matrix, and an inverted staggered thin film transistor having a combination of at least two kinds of oxide semiconductor layers with different amounts of oxygen is provided corresponding to the pixel electrode layer. In the periphery of the pixel portion in this display device, a pad portion is provided to be electrically connected to a common electrode layer formed on a counter substrate through a conductive layer made of the same material as the pixel electrode layer. One objection of our invention to prevent a defect due to separation of a thin film in various kinds of display devices is realized, by providing a structure suitable for a pad portion provided in a display panel.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display device

A liquid crystal display device includes a liquid crystal display panel, a plurality of groups of light source units, a plurality of light guide plates, and a light source control circuit configured to control light amounts of the light source units. The plurality of light guide plates are configured to transmit light from the plurality of groups of the light source units. In each of the plurality of light guide plates, areas from which the transmitted light exiting toward the liquid crystal display panel differ from one another. One of the plurality of groups of the light source units paired with one of the plurality of light guide plates includes at least two light source units that are controlled in light amount independently. A number of the areas of the one of the plurality of light guide plates is at least a number of the light source units thereof.
Owner:PANASONIC LIQUID CRYSTAL DISPLAY CO LTD +1

Directional Backlight with Reduced Crosstalk

A backlight suitable for use in an autostereoscopic display includes a light guide and a first and second light source assembly. The light guide has opposed first and second major surfaces, and opposed first and second side surfaces. The first and second light source assemblies are disposed to inject visible light into the light guide through the first and second side surfaces, respectively. Substantially all of the first side surface highly transmits a second light portion out of the light guide into air, the second light portion originating from the second light source assembly, and substantially all of the second side surface highly transmits a first light portion in a corresponding fashion. One or more first non-emitting surfaces of the first light source assembly are disposed at least partially between two light-emitting surfaces of the first light source assembly, and are adapted to substantially absorb visible light to reduce crosstalk.
Owner:3M INNOVATIVE PROPERTIES CO

Light emitting module and method of driving the same, and optical sensor

The object of the present invention is to provide a light emitting module which is excellent in visibility and can reduce power consumption.The light emitting module includes a light emitting device containing at least a pixel section 101 and a sensor section 104, which are formed on the same insulating body, and further includes means for sensing illuminance of a use environment with the sensor section 104 and for adjusting luminance of a light emitting element according to the illuminance to keep a ratio of the luminance to the illuminance of the use environment at a constant value.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display device

To provide a display device in which a viewing angle characteristic is improved by providing a plurality of sub-pixels to one pixel. Alternatively, to provide a display device in which an aperture ratio is suppressed even when a plurality of sub-pixels is provided. A pixel including first sub-pixel, a second sub-pixel, and a third sub-pixel, a scanning line, a signal line, a first capacitor wiring, a second capacitor wiring and a third capacitor wiring are provided. Pixel electrodes each electrically connected to one electrode of the first to third capacitor elements, and the first to third capacitor wirings, respectively, are provided to the first to third sub-pixels electrodes, respectively. Potentials of the first capacitor wiring and the second capacitor wiring are changed and a potential of the third capacitor wiring is kept almost constant.
Owner:SEMICON ENERGY LAB CO LTD

Display device and driving method thereof

It is an object of the present invention to provide a display device in which problems such as an increase of power consumption and increase of a load of when light is emitted are reduced by using a method for realizing pseudo impulsive driving by inserting an dark image, and a driving method thereof. A display device which displays a gray scale by dividing one frame period into a plurality of subframe periods, where one frame period is divided into at least a first subframe period and a second subframe period; and when luminance in the first subframe period to display the maximum gray scale is Lmax1 and luminance in the second subframe period to display the maximum gray scale is Lmax2, (½) Lmax2<Lmax1<( 9 / 10) Lmax2 is satisfied in the one frame period, is provided.
Owner:SEMICON ENERGY LAB CO LTD

Optical stack for directional display

A privacy display comprises a spatial light modulator and a passive retarder arranged between first and second polarisers arranged in series with the spatial light modulator. On-axis light from the spatial light modulator is directed without loss, and off-axis light has reduced luminance. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction over a wide polar field of view. Off-axis visibility of the display in an automotive vehicle can be reduced.
Owner:REALD SPARK LLC

Light-emitting diode and vehicular lamp

A light-emitting diode including a curved surface portion 14aA formed in the front face of a sealing member 14 with the cross-sectional shape of the curved surface portion being in the shape of an undulating curve that has a concave curve C1 near the optical axis and convex curves C2 on both sides of concave curve C1, thus allowing the light emitted from a light-emitting chip 12 at a small divergence angle centered on the optical axis Ax to reach the concave curve C1 and to be directed forward as diffused light deflected from the optical axis and further allowing the light emitted at a large divergence angle centered on the optical axis Ax to reach the convex curves C2 and to be directed forward as light deflected toward line L positioned at the divergence angle θ.
Owner:KOITO MFG CO LTD

LCD plateau power conservation

Described herein are power conservation systems and methods that reduce power consumption for an electronics device including a liquid crystal display (LCD). The LCD includes a backlight that offers multiple luminance levels, where each level consumes a different amount of power. The systems and methods alter video information while the backlight remains at a backlight luminance level. The alteration reduces luminance for the video information to produce new video information that can be presented at a lower backlight luminance level. Change to the lower backlight luminance level may then occur without significantly affecting aggregate luminance of the new video information, as perceived by a user. The LCD and electronics device consume less power at the lower luminance level.
Owner:SAMSUNG ELECTRONICS CO LTD

Light source and display device

The invention provides electroluminescent (EL) elements, such that a red EL light source, a green EL light source and a blue EL light source emit red color light, green color light, and blue color light, respectively, and are disposed at the rear of liquid crystal display elements. Each EL light source includes an organic EL element in which an organic thin film emits light. Each EL light source has a structure in which an organic luminescent layer is sandwiched between an indium tin oxide (ITO) electrode and a metal electrode which have striped patterns which are orthogonal to each other, and sections (luminescent sections) at which the striped patterns of the ITO electrode and the metal electrode intersect with each other emit light. The luminescent sections are arrayed two-dimensionally on a glass substrate and illuminate the entire display area of the liquid crystal display element.
Owner:SEIKO EPSON CORP

Semiconductor device and driving method thereof

A display device which can compensate for variations of the threshold voltage of transistors and suppress variations in luminance, and a driving method thereof are provided. Current is supplied to a light emitting element and light is emitted from the light emitting element by following steps: in the first period initial voltage is stored in a storage capacitor; in the second period, voltage based on video signal voltage and the threshold voltage of the transistor is stored in the storage capacitor; and in the third period, the voltage stored in the storage capacitor in the second period is applied to a gate electrode of the transistor. By these operation processes, the current which compensates the effect of the variations of the threshold voltage of the transistor can be supplied to the light emitting element. Therefore, variations in luminance are suppressed.
Owner:SEMICON ENERGY LAB CO LTD

Display device

A display device has a light guide plate formed with a display pattern by a plurality of diffusion dots having translucency in a display pattern formed region, a light shielding layer, and a light source. A plurality of the light guide plates are arranged facing each other, and the light shielding layer is sandwiched between the light guide plates. Light from the light source is selectively introduced to one of the light guide plates to display the display pattern of the light guide plate. The light shielding layer has a surface facing an observer's side formed by a low reflectivity material and a surface facing a side opposite to the observer's side formed by a high reflectivity material. A region facing the display pattern of the light guide plate positioned on the side opposite to the observer's side than the light shielding layer is cut out.
Owner:ORMON CORP

Light emitting device and production system of the same

To provide a light emitting device without nonuniformity of luminance, a correcting circuit for correcting a video signal supplied to each pixel to a light emitting device. The correcting circuit is stored with data of a dispersion of a characteristic of a driving TFT among pixels and data of a change over time of luminance of a light emitting element. Further, by correcting a video signal inputted to the light emitting device in conformity with a characteristic of the driving TFT of each pixel and a degree of a deterioration of the light emitting element based on the over-described two data, nonuniformity of luminance caused by a deterioration of an electroluminescent layer and nonuniformity of luminance caused by dispersion of a characteristic of the driving TFT are restrained.
Owner:SEMICON ENERGY LAB CO LTD

Liquid crystal display apparatus

The present invention includes a panel on which a plurality of pixels are located, a light-source for visualizing an image displayed on the plurality of pixels, a controlling circuit for controlling the light-source, and an image-signal tone characteristic controlling circuit. Moreover, the light-source controlling circuit has a function of repeating a period. Here, the period includes a 1st time-period during which an electric current having a 1st intensity is fed to the light-source, and a 2nd time-period during which an electric current having a 2nd intensity differing from the 1st intensity is fed to the light-source. The light-source controlling circuit controls the 1st time-period and the 2nd time-period in accordance with display information. Also, in accordance with the display information as well, the tone characteristic controlling circuit is controlled so that the excellent contrast will be always available.
Owner:HITACHI DISPLAYS +1

Light distribution apparatus and methods for illuminating optical systems

Various embodiments involving structures and methods for illumination can be employed, for example, in projectors, head-mounted displays, helmet-mounted displays, back projection TVs, flat panel displays as well as other optical systems. Certain embodiments may include prism elements for illuminating, for example, a spatial light modulator. Light may be coupled to the prism in some cases using fiber optics or lightpipes. The optical system may also include a diffuser having scatter features arranged to scatter light appropriately to produce a desired luminance profile. Other embodiments are possible as well.
Owner:SYNOPSYS INC

Reflective optical stack for privacy display

A privacy display comprises a polarised output spatial light modulator, reflective polariser, plural polar control retarders and a polariser. In a privacy mode of operation, on-axis light from the spatial light modulator is directed without loss, whereas off-axis light has reduced luminance. Further, display reflectivity is reduced for on-axis reflections of ambient light, while reflectivity is increased for off-axis light. The visibility of the display to off-axis snoopers is reduced by means of luminance reduction and increased frontal reflectivity to ambient light. In a public mode of operation, the liquid crystal retardance is adjusted so that off-axis luminance and reflectivity are unmodified.
Owner:REALD SPARK LLC

Light-emitting diode and vehicular lamp

A light-emitting diode including a curved surface portion 14aA formed in the front face of a sealing member 14 with the cross-sectional shape of the curved surface portion being in the shape of an undulating curve that has a concave curve C1 near the optical axis and convex curves C2 on both sides of concave curve C1, thus allowing the light emitted from a light-emitting chip 12 at a small divergence angle centered on the optical axis Ax to reach the concave curve C1 and to be directed forward as diffused light deflected from the optical axis and further allowing the light emitted at a large divergence angle centered on the optical axis Ax to reach the convex curves C2 and to be directed forward as light deflected toward line L positioned at the divergence angle θ.
Owner:KOITO MFG CO LTD

Directional privacy display

A directional privacy display may include a waveguide; and an array of light sources and spatial light modulator that operate in a time sequential manner. The waveguide may include light extraction features arranged to direct light from an array of light sources by total internal reflection to an array of viewing windows and a reflector arranged to direct light from the waveguide by transmission through extraction features of the waveguide to the same array of viewing windows. First and second phases may be temporally multiplexed with respective primary and secondary images and primary and secondary angular illumination distributions. An efficient and bright privacy display may be provided with obscured primary image visibility for off-axis observers.
Owner:REALD SPARK LLC
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Patsnap Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Patsnap Eureka Blog
Learn More
PatSnap group products