Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

259 results about "Nanoparticle dispersion" patented technology

Nanoparticle Dispersion. High shear forces created by ultrasonic cavitation have the ability to break up particle agglomerates and result in smaller and more uniform particles sizes. The stable and homogenous suspensions produced by ultrasonics are widely used in many industries today.

Carbon nanoparticle-containing lubricant and grease

The present invention relates to processes for preparing a stable suspension of carbon nanoparticles in a thermal transfer fluid to enhance thermal conductive properties, viscosity, and lubricity. One process is to disperse carbon nanoparticles directly into a thermal transfer fluid and other additives in the present of surfactants with intermittent ultrasonication. The second process is carried out in three stages. First, carbon nanoparticles are dispersed into a volatile solvent. Then, a thermal transfer fluid, surfactants, and other additives are added into this intermediate dispersion and mixed thoroughly. At last, the volatile solvent is removed to produce a uniformly dispersed nanofluid. The third process is to disperse carbon nanoparticles at an elevated temperature into a homogeneous mixture of surfactants and other additives in a thermal transfer fluid with help of a physical agitation. The present invention also relates to compositions of carbon nanoparticle nanofluids, such as nanolubricants and nanogreases. The nanofluid of the present invention is a dispersion of carbon nanoparticles, particularly carbon nanotubes, in a thermal transfer fluid in the present of surfactants. Addition of surfactants significantly increases the stability of nanoparticle dispersion. For nanogreases, carbon nanoparticles function both as a thickener to modulate viscosity and as a solid heat transfer medium to enhance thermal conductivity and high temperature resistance.
Owner:SOUTH DAKOTA SCHOOL OF MINES AND TECHNOLOGY

Conductive particle, visible light transmissive particle dispersed conductor, method for producing same, transparent conductive thin film, method for producing same, transparent conductive article using same, and infrared shielding article

An object of the present invention is to provide an infrared-shielding nanoparticle dispersion that has a property whereby visible light is adequately transmitted, and light in the near-infrared region is adequately shielded; an infrared-shielding body manufactured using the infrared-shielding nanoparticle dispersion; a method for manufacturing infrared-shielding nanoparticles that are used in the infrared-shielding nanoparticle dispersion; and infrared-shielding nanoparticles manufactured using the method for manufacturing infrared-shielding nanoparticles. The present invention is a method for manufacturing infrared-shielding nanoparticle dispersion obtained by dispersing infrared-shielding nanoparticles in a medium, an infrared-shielding body manufactured by using the infrared-shielding nanoparticle dispersion, and infrared-shielding nanoparticles used in the infrared-shielding nanoparticle dispersion, wherein the infrared-shielding nanoparticles include a substance expressed by the general formula MXAYW(1-Y)O3 (where M is one or more elements selected from H, He, alkali metals, alkaline-earth metals, rare earth elements, Mg, Zr, Cr, Mn, Fe, Ru, Co, Rh, Ir, Ni, Pd, Pt, Cu, Ag, Au, Zn, Cd, Al, Ga, In, Tl, Si, Ge, Sn, Pb, Sb, B, F, P, S, Se, Br, Te, Ti, Nb, V, Mo, Ta, Re, Be, Hf, Os, Bi, and I; A is one or more elements selected from Mo, Nb, Ta, Mn, V, Re, Pt, Pd, and Ti; W is tungsten; O is oxygen; 0<X≦1.2; 0<Y≦1).
Owner:SUMITOMO METAL MINING CO LTD

Non ionic/electrolyte, liquid/gaseous, mechanically refined/nanoparticle dispersion Building Materials/High Wear-Heat Resistant Part Brushes, Windings, Battery Cells, Brake Pads, Die Cast Molding, Refrigeration, Polarized/Integrated Optical, Spectrometric Processors, Central Processor Unit Processors, Electronic Storage Media, Analogous Series/Parallel Circuit Generators/Transceivers, Particulate Matter PM Carbonaceous-Polyamide, Crystalline Silica, and Cellulosic Filament Extraction/Miners Suit

InactiveUS20140178513A1High wear-heat resistant partAuxillary shaping apparatusShaping pressTransceiverTransformer
The variable hydraulic press and distillation reservoir process scientific formula non ionic or electrolyte mechanically refined and nanoparticle dispersion preform slurry extrusion with or without ionic suspension Preform slurry high wear-heat resistant parts electronic composite coils, windings, annealing, drawn, spun, coils, windings, wire, woven textile mesh, shielding, parts brushes, inductors, antinode couplers, electric rheostats, starters, motors, alternators, generators, ionic suspension enhanced composite coils, composite windings, spun wound coils and windings beryllium Be4, magnesium Mg12, copper Cu29 and carbon nanofoam C6, electronic parts capacitors, ionic suspension circuit battery cells, electronic parts rheostats, resistors, transformers, transducers, rectifiers, power supplies, or heat sinks Preform slurry high wear-heat resistant parts aerospace, automotive, and transportation brake calipers, rotors, pads, and bushings Preform slurry non ionic or electrolyte mechanically refined and nanoparticle high wear-heat resistant parts precision casting molds 2.5 phase die cast molding Building Materials fine concrete, mortar, brick, and tiles.
Owner:MATTHEWS ROBERT RICHARD

Non ionic groups of amphoteric polysaccharide linear or branched alkyl or acid and base distillation reservoir liquid or gas mechanically refined and Nano particle dispersion and recovery basin in vacuum processing for Building Materials and High Wear-Heat Resistant Parts Brushes; Windings; Coils; Battery Cells; Brake Pads; Bushings; 2.5 Phase Extrusions Die Cast Molding; Refrigeration; Polarized Glass; and Central Processing Unit Processors.

Manufacture process scientific formula mechanically refined and nanoparticle dispersion preform slurry non ionic or electrolyte carbon nanofoam CNFs with or without ionic suspension elements manufactured, Preform slurry high wear-heat resistant parts electronic component composite coils, composite windings, drawn, annealing, spun, coils, windings, wire, woven textile mesh, shielding, brushes, inductors, antinode couplers, electric rheostats, starters, motors, alternators, generators, ionic suspension element enhanced composite coils, composite windings, drawn, annealing, spun, coils, windings, wire, woven textile mesh, shielding, brushes, capacitors, battery cells, rheostats, electronic resistors, transformers, transducers, rectifiers, power supplies, or heat sinks, Preform slurry carbon nanofoam CNFs extrusion high wear-heat resistant parts aerospace, automotive, and transportation brake calipers, rotors, pads, washers, spacers, and bushings, Preform slurry carbon nanofoam CNFs extrusion high wear-heat resistant parts precision casting molds manufacturing highly pure metal, Super Alloy, acid-solid, alkaline, glass, acrylic, halide, alkalide, or ceramics specializing in 2.5 phase die cast molding.
Owner:MATTHEWS ROBERT RICHARD

Method for preparing load type high-dispersion multi-component precious metal nanoparticle catalyst

The invention relates to a method for preparing a load type high-dispersion multi-component precious metal nanoparticle catalyst. The method comprises the steps of 1) under inert atmosphere, uniformly stirring a solvent and a surface active agent, then adding a precious metal precursor solution, rising the temperature, reacting for a certain period of time, cooling to the room temperature, adding normal hexane, and performing extraction layering; 2) uniformly mixing the obtained upper layer nanoparticle solution with a carrier, and stirring or performing ultrasonic treatment; and 3) centrifugating, washing and drying or baking the mixed solution to obtain the catalyst. For the precious metal catalyst, even under a relatively high carrying amount, relatively good precious metal nanoparticle dispersion degree can be still guaranteed; the particle sizes of the particles are uniformly distributed; the precious metal carrying amount is controlled easily and accurately; the particle sizes and the components of multi-component particles can be controlled; and the catalysis application range is wide. The process is simple; the preparation cost is low; the applicability is high; and load-type high-dispersion precious metal and the multi-component precious metal nanoparticle catalyst can be prepared in a large scale.
Owner:TIANJIN POLYTECHNIC UNIV

Grapheme oxide quantum dot function sphere nanoparticle, polyamide reverse osmosis membrane/nanofiltration membrane modified by nanoparticle and preparation method

The invention discloses a grapheme oxide quantum dot function sphere nanoparticle, a polyamide reverse osmosis membrane/nanofiltration membrane modified by the nanoparticle and a preparation method. The grapheme oxide quantum dot function sphere nanoparticle comprises a sphere kernel taking positive charge nanoparticles as supports and grapheme oxide quantum dots wrapping the sphere kernel layer by layer, and is prepared by slowly adding grapheme oxide quantum dot dispersion liquid into positive charge nanoparticle dispersion liquid prior to centrifugal precipitation, separation and purification. The function sphere nanoparticle based modified polyamide reverse osmosis membrane/nanofiltration membrane is prepared by inlaying the grapheme oxide quantum dot function sphere nanoparticle in a reverse osmosis membrane/nanofiltration membrane polyamide separation layer, and can be applied to the fields of seawater and brackish water desalination, seawater and brackish water softening, drinking water treatment, advanced wastewater treatment and the like. The spherical shell type special-shaped nanochannel is provided with multiple inlets and outlets, and water flux of the membrane can be increased.
Owner:OCEAN UNIV OF CHINA

Mesoporous silica nanomotor, and preparation method and application thereof

InactiveCN103011067ASolve technical problems with large dimensionsObvious yin and yang characteristicsIndividual molecule manipulationNanosensorsNanomotorMesoporous silica
The invention discloses a mesoporous silica nanomotor, and a preparation method and the application thereof, relates to a motor, a preparation method and the application thereof, and aims at solving the technical problem of large size of the existing motor. The mesoporous silica nanomotor adopts mesoporous silica particles with the particle sizes of 50 to 90 nm, and a platinum layer is sputtered on the partial surface of the nanomotor. The preparation method comprises the following steps: firstly, synthesizing mesoporous silica nanoparticles, secondly, performing hydrophilic treatment to silicon chips, thirdly, dripping silicon dioxide nanoparticle dispersion liquid onto the hydrophilic silicon chips, drying, and sputtering platinum onto the silicon chips, on which a single-particle layer is arranged, obtained in step III, and fourthly, drying after ultrasonic vibration for shaking off, so as to obtain the mesoporous silica nanomotor. The application is to put the mesoporous silica nanomotor into hydrogen peroxide solution to be used. The nanomotor has Yin and Yang structural characteristics and a carrying function, the preparation method is simple to operate, and the primary synthetic amount is large. The mesoporous silica nanomotor can be applied to fields of biomedical, chemical and environment detection.
Owner:HARBIN INST OF TECH
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products