Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

6723 results about "High wear resistance" patented technology

Highly wearable vacuum coating ultraviolet curing coatings

ActiveCN101157808AImprove adhesionImproved RCA wear performancePolyurea/polyurethane coatingsWear resistantLacquer
The invention relates to the electronic application-coating field, in particular to uv-curing coating with high wearing resistance and vacuum coating. The compositions and contents of the invention are: 10 wt percent to 30 wt percent of difunctional group polyurethane acrylate, 10 wt percent to 40 wt percent of high functional group polyurethane acrylate, 5 wt percent to 20 wt percent of high functional group acrylate monomer, 0 wt percent to 15 wt percent of monofunctional group acrylate monomer, 1 wt percent to 10 wt percent of acid adhesive promoter, 1 wt percent to 6 wt percent of photoinitiator, 0 wt percent to 5 wt percent of nano wearing resistance materials, 0.1 wt percent to 2 wt percent of additive and 10 wt percent to 50 wt percent of solvent. The invention is designed for providing surface protection for vacuum coating parts of electric products such as mobile phone, MP3, and digital camera, etc., and is characterized by good surface effect, good performances of ultrawear-resistance, high temperature and humidity resistance, anti-cold thermal cycling and anti-yellowing, etc., wherein, RCA wear can be up to more than 1500 times, which can effectively improve the service life of electric products. The invention effectively enhances the adhesion and wearing resistant performance of the uv-curing and vacuum coating dope, solves the matching problem of the bottom and surface lacquer of the uv-curing and vacuum coating dope, and has broad university.
Owner:HUNAN SOKAN NEW MATERIAL

Sneaker sole material with high wear resistance and low hardness and preparation method thereof

InactiveCN102212216AReduce weightOverall Weight ImprovementSolesPolymer scienceVulcanization
The invention discloses a sneaker sole material with high wear resistance and low hardness and a preparation method thereof, particularly a method for preparing a sneaker sole material which is suitable for middle and high-grade sneaker soles with higher requirements on wear resistance and comfort. The sneaker sole material comprises the following components: butadiene rubber (BR), natural rubber (NR), styrene butadiene rubber (SBR), softening oil, a reinforcing agent, an activating agent, a coupling agent, a vulcanizer, a vulcanization accelerator, a tackifier and an anti-aging agent. A series of sole material with high wear resistance (DIN abrasion is less than or equal to 40mm<3>, and the length of grinding marks is 3.0 to 4.0mm) and low hardness (ShoreA 60-66) is prepared by screening the proportion of rubber composition, the coupling agent, the accelerator, and the activating agent and reasonably controlling a process on the basis of the rubber, the softening oil and the reinforcing agent. The material has the advantages that: (1) the total weight of a sneaker sole is expected to be reduced, namely the thickness of a rubber outer sole of a sneaker can be reduced under the condition that the material has the wearing life which is the same as that of the conventional sneaker sole, so that the total weight of the sole is reduced; (2) the humidity and slip resistance is improved, namely the hardness of the sole is lower and the sole is easy to distort under the condition of stress, so that the contact area of the sole and the ground is increased, and the aim of improving the humidity and slip resistance of the sole is fulfilled; and (3) the comfort is improved.
Owner:CHINA LEATHER & FOOTWEAR IND RES INST

Ultraviolet curing paint and preparation method and application thereof

The invention discloses an ultraviolet (UV) curing paint and a preparation method and application thereof. The preparation method comprises the following steps: weighting modified SiO2 sol to place in a container, adding water-soluble UV-cured resin, solvent and additive in turn, stirring for 10min, then adding photoinitiator, and stirring for 5min to obtain the UV curing paint, wherein the contents of the water-soluble UV-cured resin, the solvent, the additive and the photoinitiator are 10-60%, 7-33%, 0.1% and 2% respectively. The UV curing paint prepared by the method of the invention has the advantages of inorganic materials such as high hardness, high wear resistance, scratch resistance and good thermal stability and also has the advantages of organic materials such as adhesivity and relative flexibility; and the UV curing paint is suitable to be used as the protective coatings on the surfaces of all kinds of optical plastic products such as polyester which contains polycarbonate, polymethylmethacrylate, polyethylene terephthalate (PET) and the like. By adopting the UV curing paint of the invention, the defects of the existing UV curing paint in the aspects of hardness, wear resistance, scratch resistance and light transmittance, can be overcomed to a certain extent.
Owner:GUANGZHOU HUMAN CHEM

Method for carrying out laser-cladding on high-hardness nickel-based alloy material in large area

The invention belongs to the field of material surface engineering and more particularly relates to a method for carrying out cladding on a high-hardness wear-resistant anti-corrosion nickel-based alloy material on a metal substrate E in a large area by applying a laser cladding technology, solving the problem of cracks generated in the laser cladding process of the high-hardness wear-resistant nickel-based alloy, in particular the cladding defects, such as cracks with the thickness of more than 1mm, pores and the like during large-area cladding. According to the invention, the high-hardness nickel-based alloy powder material is cladded on the surface of the metal substrate in the large area to form a high-hardness wear-resistant anti-corrosion nickel-based alloy coating by applying the laser cladding technology and adopting a scientific and reasonable process method. According to the method disclosed by the invention, stability and consistency of laser cladding are foundationally ensured, defects, such as cracks, pores, impurities can be prevented from generating, heat affected regions of the substrate are reduced, dilution rate is reduced, the high-wear-resistance anticorrosion nickel-based alloy coating with firm metallurgical bonding and fine and compact grains is obtained and has the hardness reaching 58-63HRC, and the service life of the processed workpiece can be prolonged by more than 1-2 times.
Owner:NINGBO SIASUN ROBOT TECH CO LTD

Method of in situ synthetic steel bond hard alloy casting composite hammerhead and hammerhead

A method of an in situ synthetic steel bond hard alloy casting composite hammerhead adopts a vacuum lost foam casting technology, wherein Ti powder, graphite powder, W powder and metal powder are mixed, and are added with an adhesion agent to produce a powder coating paste, the powder coating paste is filled in a reinforcement groove or a hole of a working part of an expanded poly styrol (EPS) foaming plastic modal of a hammerhead casting, during the pouring process, the high temperature of liquid steel is utilized to initiate the self propagating synthesis reaction, the reactions of Ti plus C->TiC and W plus C->WC are carried out, so the TiC and WC-based hard alloy phases are formed, the liquid steel is filled into the clearance of a hard phase, so an in situ synthetic titanium carbide and tungsten carbide steel bond hard alloy is obtained, and the hard alloy is embedded in the steel base body of the working part of the hammerhead. When the hammerhead which is produced through the method of the in situ synthetic steel bond hard alloy casting composite hammerhead is used, because the hard alloy and the casting are completely, metallurgically and firmly combined together, the hammerhead has high wear resistance and impact resistance during the use, has a simple technological process, low production cost, and is applicable to large-scale industrial production.
Owner:KING STRONG MATERIAL ENG LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products