Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

3984 results about "Network configuration" patented technology

Network configuration and change management (NCCM) is a discipline in information technology. According to research from IDC and Gartner, NCCM is one of the fastest growing markets in the ITOM (IT Operations Management) market.

Multimedia surveillance and monitoring system including network configuration

A comprehensive, wireless multimedia surveillance and monitoring system provides a combination of megapixel digital camera capability with full motion video surveillance with a network, including network components and appliances such as wiring, workstations, and servers with the option of geographical distribution with various wide area carriers. The full service, multi-media surveillance system is capable of a wide range of monitoring techniques utilizing digital network architecture and is adapted for transmitting event data, video and / or image monitoring information, audio signals and other sensor and detector data over significant distances using digital data transmission over a LAN, wireless LAN, Intranet or Internet for automatic assessment and response including dispatch of response personnel. Both wired and wireless appliance and sensor systems may be employed. GPS dispatching is used to locate and alert personnel as well as to indicate the location of an event. Automatic mapping and dispatch permits rapid response. The wireless LAN connectivity permits local distribution of audio, video and image data over a relatively high bandwidth without requirement of a license and without relying on a common carrier and the fees associated therewith. The surveillance system may be interfaced with a WAN (wide area Network) or the Internet for providing a worldwide, low cost surveillance system with virtually unlimited geographic application. Centralized monitoring stations have access to all of the surveillance data from various remote locations via the Internet or the WAN. A server provides a centralized location for data collection, alarm detection and processing, access control, dispatch processing, logging functions and other specialized functions. The server may be inserted virtually anywhere in the Intranet / Internet network. The topology of the network will be established by the geographic situation of the installation. Appropriate firewalls may be set up as desired. The server based system permits a security provider to have access to the appliance and sensor and surveillance data or to configure or reconfigure the system for any station on the network.
Owner:PR NEWSWIRE

Headset-Based Telecommunications Platform

A hands-free wireless wearable GPS enabled video camera and audio-video communications headset, mobile phone and personal media player, capable of real-time two-way and multi-feed wireless voice, data and audio-video streaming, telecommunications, and teleconferencing, coordinated applications, and shared functionality between one or more wirelessly networked headsets or other paired or networked wired or wireless devices and optimized device and data management over multiple wired and wireless network connections. The headset can operate in concert with one or more wired or wireless devices as a paired accessory, as an autonomous hands-free wide area, metro or local area and personal area wireless audio-video communications and multimedia device and / or as a wearable docking station, hot spot and wireless router supporting direct connect multi-device ad-hoc virtual private networking (VPN). The headset has built-in intelligence to choose amongst available network protocols while supporting a variety of onboard, and remote operational controls including a retractable monocular viewfinder display for real time hands-free viewing of captured or received video feed and a duplex data-streaming platform supporting multi-channel communications and optimized data management within the device, within a managed or autonomous federation of devices or other peer-to-peer network configuration.
Owner:EYECAM INC

Method for configuring and routing data within a wireless multihop network and a wireless network for implementing the same

A method for configuring a wireless network comprised of a control node and a multiplicity of individual nodes includes the steps of logically organizing the network into a plurality of bands Bi, wherein each of the bands Bi includes a plurality of the individual nodes and is located a number i of hops away from the control node, where i=0 through N, and N≧1, and then assigning a logical address to each of the individual nodes, and storing the assigned logical addresses in the respective individual nodes. The assigned logical address for each individual node includes a first address portion which indicates the band Bi in which that individual node is located, and a second address portion that identifies that node relative to all other individual nodes located in the same band. The network is preferably a packet-hopping wireless network in which data is communicated by transferring data packets from node-to-node over a common RF channel. Each of the individual nodes is preferably programmed to perform the step of comparing its own logical address to a routing logical address contained in each packet which it receives, and to either discard, re-transmit, or process the packet based upon the results of the comparison. The routing logical address contained in a received packet contains the full routing information required to route the packet from a sending node to a destination node along a communication path prescribed by the routing logical address. The control node is programmed to control the routing of packets by inserting the routing logical address into each packet which it transmit, detecting any unsuccessfully transmitted packets, detecting a faulty node in the communication path prescribed by the routing logical address in response to detecting an unsuccessfully transmitted packet, and changing the routing logical address of the unsuccessfully transmitted packet to a new routing logical address which prescribes a new communication path which does not include the detected faulty node. Also disclosed are a wireless network and a network node which are designed to implement the foregoing network configuration and/or routing methods.
Owner:SIGNIFY HLDG BV

Automated Network Configuration of Virtual Machines in a Virtual Lab Environment

Methods, systems, and computer programs for creating virtual machines (VM) and associated networks in a virtual infrastructure are presented. The method defines virtual network templates in a database, where each virtual network template includes network specifications. A configuration of a virtual system is created, which includes VMs, virtual lab networks associated with virtual network templates, and connections from the VMs to the virtual lab networks. Further, the configuration is deployed in the virtual infrastructure resulting in a deployed configuration. The deployment of the configuration includes instantiating in the virtual infrastructure the VMs of the configuration, instantiating in the virtual infrastructure the virtual lab networks, retrieving information from the database, and creating and executing programming instructions for the VMs. The database information includes the network specifications from the virtual network templates associated with the virtual lab networks, and network resources for the virtual lab networks from a pool of available network resources. The programming instructions are created for the particular Guest Operating System (GOS) running in each VM based on the GOS and on the retrieved database information. When executed in the corresponding VM GOS, the programming instructions configure the VMs network interfaces with the corresponding network specifications.
Owner:NICIRA

Wager game license management in a peer gaming network

Novel wager gaming systems and methods for wager game license management in a network utilizing peer networking technology are in the various embodiments. A network component, such as a server computer or a gaming machine, is deputized by a central licensing authority or other authorized license management component. The network component is deputized once it receives what may be referred to as a license deputizing certificate. Upon receiving this certificate or at some point thereafter, the deputized component is provided with various data relating to devices in the gaming network, wagering games available in the network, and network configuration data. The gaming network may have a primary network backbone and local peer gaming networks operating in conjunction with each other via the network backbone. A local peer gaming network may share wager game code, memory space, and other gaming-related resources. Once a network component is deputized to perform as an authorized license management component, it assumes the role of local licensing server for the gaming network or for a local peer gaming network. This component may be a gaming machine in a local peer network or an existing local license server which is now able to supply and manage the distribution of license tokens in a gaming network utilizing peer network technology.
Owner:IGT
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products