Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

612 results about "Gaze directions" patented technology

Geometry of gaze direction. Gaze direction is the vector positioned along the visual axis, pointing from the fovea of the looker through the center of the pupil to the gazed-at spot; binocular looking involves two such vectors, but for simplicity I will disregard here the fact their directions are somewhat different.

System and methods for controlling automatic scrolling of information on a display or screen

A system 10 for controlling the automatic scrolling of information on a computer display or screen 12 is disclosed. The system 10 generally includes a computer display or screen12, a computer system 14, gimbaled sensor system 16 for following and tracking the position and movement of the user's head 18 and user's eye 20, and a scroll activating interface algorithm using a neural network to find screen gaze coordinates implemented by the computer system 14 so that corresponding scrolling function is performed based upon the screen gaze coordinates of the user's eye 20 relative to a certain activation area(s) on the display or screen 12. The gimbaled sensor system 16 contains a gimbaled platform 24 mounted at the top of the display or screen 12. The gimbaled sensor system 16 tracks the user's 22 head 18 and eye 20, allows the user to be free from any attachments while the gimbaled sensor system 16 is eye tracking, and still allows the user to freely move his or her head when the system 10 is in use. A method of controlling automatic scrolling of information on a display or screen 12 by a user 22 is also disclosed. The method generally includes the steps of finding a screen gaze coordinate 146 on the display or screen 12 of the user 22, determining whether the screen gaze coordinate 146 is within at least one activated control region, and activating scrolling to provide a desired display of information when the gaze direction is within at least one activated control region. In one embodiment, the control regions are defined as upper control region 208, lower region 210, right region 212, and left region 214 for controlling the scrolling respectively in the downward, upward, leftward, and rightward directions. In another embodiment, the control regions are defined by concentric rings 306, 308, and 310 for maintaining the stationary position of the information or controlling the scrolling of the information towards the center of the display or screen 12.
Owner:LEMELSON JEROME H +1

System and methods for controlling automatic scrolling of information on a display or screen

A system for controlling the automatic scrolling of information on a computer display. The system includes a computer display, a computer gimbaled sensor for tracking the position of the user's head and user's eye, and a scroll activating interface algorithm using a neural network to find screen gaze coordinates implemented by the computer. A scrolling function is performed based upon the screen gaze coordinates of the user's eye relative t activation area(s) on the display. The gimbaled sensor system contains a platform mounted at the top of the display. The gimbaled sensor system tracks the user's head and eye allowing the user to be free from attachments while the gimbaled sensor system is tracking, still allowing the user to freely move his head. A method of controlling automatic scrolling of information on a display includes the steps of finding a screen gaze coordinate on the display of the user determining whether the screen gaze coordinate is within at least one activated control region, and activating scrolling to provide a desired display of information when the gaze direction is within at least one activated control region. In one embodiment, the control regions are defined as upper control region, lower region, right region and left region for controlling the scrolling respectively in downward, upward, leftward and rightward directions. In another embodiment, control regions are defined by concentric rings for maintaining the stationary position of the information or controlling the scrolling of the information towards the center of the display or screen.
Owner:LEMELSON JEROME H +1

Method and system for measuring emotional and attentional response to dynamic digital media content

The present invention is a method and system to provide an automatic measurement of people's responses to dynamic digital media, based on changes in their facial expressions and attention to specific content. First, the method detects and tracks faces from the audience. It then localizes each of the faces and facial features to extract emotion-sensitive features of the face by applying emotion-sensitive feature filters, to determine the facial muscle actions of the face based on the extracted emotion-sensitive features. The changes in facial muscle actions are then converted to the changes in affective state, called an emotion trajectory. On the other hand, the method also estimates eye gaze based on extracted eye images and three-dimensional facial pose of the face based on localized facial images. The gaze direction of the person, is estimated based on the estimated eye gaze and the three-dimensional facial pose of the person. The gaze target on the media display is then estimated based on the estimated gaze direction and the position of the person. Finally, the response of the person to the dynamic digital media content is determined by analyzing the emotion trajectory in relation to the time and screen positions of the specific digital media sub-content that the person is watching.
Owner:MOTOROLA SOLUTIONS INC

System and methods for controlling automatic scrolling of information on a display or screen

A system 10 for controlling the automatic scrolling of information on a computer display or screen 12 is disclosed. The system 10 generally includes a computer display or screen 12, a computer system 14, gimbaled sensor system 16 for following and tracking the position and movement of the user's head 18 and user's eye 20, and a scroll activating interface algorithm using a neural network to find screen gaze coordinates implemented by the computer system 14 so that corresponding scrolling function is performed based upon the screen gaze coordinates of the user's eye 20 relative to a certain activation area(s) on the display or screen 12. The gimbaled sensor system 16 contains a gimbaled platform 24 mounted at the top of the display or screen 12. The gimbaled sensor system 16 tracks the user's 22 head 18 and eye 20, allows the user to be free from any attachments while the gimbaled sensor system 16 is eye tracking, and still allows the user to freely move his or her head when the system 10 is in use. A method of controlling automatic scrolling of information on a display or screen 12 by a user 22 is also disclosed. The method generally includes the steps of finding a screen gaze coordinate 146 on the display or screen 12 of the user 22, determining whether the screen gaze coordinate 146 is within at least one activated control region, and activating scrolling to provide a desired display of information when the gaze direction is within at least one activated control region. In one embodiment, the control regions are defined as upper control region 208, lower region 210, right region 212, and left region 214 for controlling the scrolling respectively in the downward, upward, leftward, and rightward directions. In another embodiment, the control regions are defined by concentric rings 306, 308, and 310 for maintaining the stationary position of the information or controlling the scrolling of the information towards the center of the display or screen 12.
Owner:LEMELSON JEROME H +1
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products