Patents
Literature
Eureka-AI is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Eureka AI

10784results about "Cooling fluid circulation" patented technology

Interactive control system for an HVAC system

An interactive system for controlling the operation of an HVAC system is provide that comprises a thermostat for initiating the operation of the HVAC system in either a full capacity mode of operation or at least one reduced capacity mode of operation, and a controller for an outside condenser unit having a condenser fan motor and a compressor motor, the controller being capable of operating the compressor in a full capacity mode and at least one reduced capacity mode. The system also comprises a controller for an indoor blower unit having a blower fan motor, the controller being capable of operating the blower fan motor in a full capacity mode an at least one reduced capacity mode. The system further includes a communication means for transmitting information between the outside condenser unit controller and at least the indoor blower controller, where the information relates to the operation of the indoor blower and the outdoor condenser unit. The indoor blower controller responsively controls the operation of the blower fan motor in a full capacity mode or a reduced capacity mode based on the information received from the outdoor unit controller, and the outdoor unit controller responsively controls the operation of the compressor in a full capacity mode or a reduced capacity mode based on the information received from the indoor blower controller.
Owner:COPELAND COMFORT CONTROL LP

Apparatus and method for monitoring and displaying power usage

InactiveUS20060123807A1Cost of power consumptionMechanical apparatusTariff metering apparatusPower usageEngineering
A method and system to monitor and determine energy consumption and energy efficiency of devices that use electrical and/or gas power is described. In one embodiment, a power monitoring system is configured to monitor electrical and/or gas power consumption of devices such as refrigerators, air-conditioners, washers, dryers, hot tubs, etc. Power consumption of the device is processed by the power monitoring system to determine the amount of power the device is consuming and the device's energy efficiency. In one embodiment, the power monitoring system transmits data associated with the device's power consumption, such as power efficiency, power cost, power usage, etc., to the device user and/or to a power supplier such as a utility company supplying the gas and/or electricity to the device. In one configuration, when the power efficiency of the device exceeds a predefined threshold, the user and/or power supplier is notified. The power monitoring system may be configured to be integral with and/or attached to the device being measured. The power monitoring system may provide an output on a display apparatus associated with the power monitoring system attached to the device being monitored and/or the output may be part of a graphics display on a computer monitor, for example.
Owner:SULLIVAN C BRET +1

Method and apparatus for monitoring refrigerant-cycle systems

A real-time monitoring system that monitors various aspects of the operation of a refrigerant-cycle system is described. In one embodiment, the system includes a processor that measures power provided to the refrigerant-cycle system and that gathers data from one or more sensors and uses the sensor data to calculate a figure of merit related to the efficiency of the system. In one embodiment, the sensors include one or more of the following sensors: a suction line temperature sensor, a suction line pressure sensor, a suction line flow sensor, a hot gas line temperature sensor, a hot gas line pressure sensor, a hot gas line flow sensor, a liquid line temperature sensor, a liquid line pressure sensor, a liquid line flow sensor. In one embodiment, the sensors include one or more of an evaporator air temperature input sensor, an evaporator air temperature output sensor, an evaporator air flow sensor, an evaporator air humidity sensor, and a differential pressure sensor. In one embodiment, the sensors include one or more of a condenser air temperature input sensor, a condenser air temperature output sensor, and a condenser air flow sensor, an evaporator air humidity sensor. In one embodiment, the sensors include one or more of an ambient air sensor and an ambient humidity sensor.
Owner:COPELAND LP
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products