Patents
Literature
Patsnap Copilot is an intelligent assistant for R&D personnel, combined with Patent DNA, to facilitate innovative research.
Patsnap Copilot

667 results about "Laser oscillation" patented technology

Laser Oscillation. The buildup of the coherent Wave between Laser Cavity end mirrors. In CW mode, the wave bounding back and forth between mirrors transmits a fraction of its Energy on each trip; in pulsed operation, Emission happens instantaneously. Related Terms Alignment Laser , Broad Area Laser Diodes , Burst Mode...

Coupled cavity high power semiconductor laser

An active gain region sandwiched between a 100% reflective bottom Bragg mirror and an intermediate partially reflecting Bragg mirror is formed on a lower surface of a supporting substrate, to thereby provide the first (“active”) resonator cavity of a high power coupled cavity surface emitting laser device. The reflectivity of the intermediate mirror is kept low enough so that laser oscillation within the active gain region will not occur. The substrate is entirely outside the active cavity but is contained within a second (“passive”) resonator cavity defined by the intermediate mirror and a partially reflecting output mirror, where it is subjected to only a fraction of the light intensity that is circulating in the gain region. In one embodiment, non-linear optical material inside each passive cavity of an array converts an IR fundamental wavelength of each laser device to a corresponding visible harmonic wavelength, and the external output cavity mirror comprises a Volume Bragg grating (VBG) or other similar optical component that is substantially reflective at the fundamental frequency and substantially transmissive at the harmonic frequency. The VBG used in an array of such devices may be either flat, which simplifies registration and alignment during manufacture, or may be configured to narrow the IR spectrum fed back into the active resonant cavity and to shape the spatial mode distribution inside the cavity, thereby reducing the size of the mode and compensating for any deformations in the semiconductor array.
Owner:ARASOR ACQUISITION +1

Carrier-suppressed optical pulse train generation method and mode-locked semiconductor laser diode for realizing this method

A CS optical pulse train generation method, which is able to change the half width of an optical pulse constituting a CS optical pulse train, and which is compact and has low power consumption. A distributed Bragg reflector semiconductor laser utilized in this method is one which is constituted comprising an optical modulation region, a gain region, a phase control region, and a distributed Bragg reflector region. Current is injected into the gain region by way of a p-side electrode and a n-side common electrode by a constant current source, forming the population inversion required for laser oscillation. Optical modulation required to manifest mode locking is carried out in the optical modulation region. A diffraction grating is formed in the distributed Bragg reflector region. A CS optical pulse train with a repetitive frequency of frep is generated by adjusting the effective indices of both the phase control region and the distributed Bragg reflector region such that, of the longitudinal modes of the mode-locked semiconductor laser diode, the two longitudinal modes close to the frequency f0, which is the Bragg wavelength of the distributed Bragg reflector region converted to a frequency, become f0+(frep/2) and f0−(frep/2).
Owner:OKI ELECTRIC IND CO LTD
Who we serve
  • R&D Engineer
  • R&D Manager
  • IP Professional
Why Eureka
  • Industry Leading Data Capabilities
  • Powerful AI technology
  • Patent DNA Extraction
Social media
Try Eureka
PatSnap group products